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INTRODUCTION 

This report is a summary of the principal research accomplishments 
completed under contract N00014-89J-1652 on experimental and 
theoretical research relating to Free Electron Lasers, in particular the 
millimeter-wavelength FEL facility at Columbia University. The research 
spans a period of approximately six years. 

Following this introduction, the remainder of the report consists of a 
compilation of published research papers. These comprise a representative 
sample (but not complete) of the major research findings. Also not to be 
overlooked is that the research resulted in the award of seven doctorates, 
supported all or in part by the ONR. There now follows in this section an 
overview of these findings. 

Section I consists of three papers on the subject of optical guiding, 
originating from prior ONR and NSF grants. The first paper expands on 
the results presented in an earlier Physical Review Letter, and demonstrates 
that optical guiding effects occur in a diffraction-dominated regime of 
"refractive guiding exponential growth" using spatial measurements of the 
transverse structure of the fields. The second and third papers describe the 
effect of optical guiding on the sideband instability frequencies, and 
therefore comprise an independent measurement of guiding in the regime 
of saturated growth. 

Section II is a letter describing measurements of the statistical 
properties of wiggler radiation made on the Brookhaven storage ring. 
This is a report on an experiment which was motivated by earlier work on 
the photonics of the FEL by Bhattacharjee and Gjaja, in the preceding 
ONR grant. 

Section HI is comprised of five papers on radiation pulse effects in 
the FEL. The first paper is a reworking of the linear theory of 
superradiance which accounts for radiation spikes on or near short electron 
pulse FEL radiation. The second theory paper models the FEL as an 
optical fiber, and finds that inherent dispersive properties favor the 
production of solitary wave pulses of radiation. This idea was persued 
experimentally in the next three papers: the first describes the initial 
discovery of short spiking pulses in our millimeter FEL, and the next two 
papers refine the measurements in connection with sidebands and 
"slippage", and compare data with the predictions of solitary-wave theory. 



Section IV reports results from our "inverse FEL accelerator". This 
experiment was initially supported by the NSF and ONR, and now activity 
in free electron accelerators is supported at Columbia by the DOE, division 
of High Energy Physics. This paper is the first experimental proof of the 
IFEL principle, originally outlined by R. Palmer in 1972. 

Section V is made up of two papers which reconfigure the undulator 
to achieve unusual radiation effects. The first deals with harmonic 
radiations and is a theory study. The second reports on a measurement in 
which the undulator is used to convert the FEL radiation into a mode 
which steers the radiation off-axis. 

Section VI, the last paper, is a recent Physical Review Letter which 
describes how an undulator can be programmed so that a narrow optical 
pulse can be amplified to very high intensity - of the order of the electron 
beam intensity- while retaining a nearly Gaussian profile. The resultant 
pulses are ~ 350fsec in the IR and ~50psec at 200GHz; since the pulses are 
only a few wavelengths long, this technique may have application to 
impulse radar. 

Further studies of the use of beam pre-bunching to achieve 
coherence and phase stability are being continued under a new ONR grant 
at present. 
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PHYSICAL REVIEW A VOLUME 40, NUMBER 9 NOVEMBER 1, 1989 

Theory and observation of optical guiding in a free-electron laser 

A. Bhattacharjee, S. Y. Cai, S. P. Chang, J. W. Dodd, 
A. Fruchtman,* and T. C. Marshall 

Department of Applied Physics, Columbia University, New York, New York 10027 
(Received 5 June 1989) 

Optical guiding in a Raman free-electron laser (FED is studied theoretically and experimentally. 
Two complimentary theoretical approaches to the problem of optical guiding in a waveguide con- 
taining a filamentary electron beam are given and shown to be in good agreement with each other in 
the exponential gain regime. Evidence for optical guiding of 2-mm-wavelength radiation along the 
electron beam in the Columbia University FEL is obtained experimentally by analysis of spatial 
"ring-down" data of the optical wave profile and compared with numerical simulations. These data 
are presented for the exponential gain regime. A similar experiment at signal saturation conditions 
shows a much ]ess well-defined ring-down. We give plausible experimental as well as theoretical ar- 
guments why the ring-down pattern is less well defined. Based on the observations presented in this 
paper, it is not possible to validate optical guiding at saturation. 

I. INTRODUCTION 

In a free-electron laser (FEL), the electron beam is not 
only the source of energy for the radiation field, but can, 
in addition, distort the wave front and alter the phase ve- 
locity of the radiation. The modified index of refraction 
can then cause the optical beam to propagate almost 
self-similarly along the electron beam despite the pres- 
ence of arbitrarily strong diffraction. This effect, known 
as optical guiding,1-4 has been the subject of consider- 
able theoretical research recently.5-13 Two qualitatively 
different mechanisms for guiding have been elucidated in 
the literature.14 The first one is gain guiding, in which 
loss of optical power by diffraction is compensated for by 
the amplification of the radiation. In order that gain 
guiding may dominate, a necessary condition is that the 
gain length be shorter than or comparable to the Ray- 
leigh range for the radiation. The second mechanism, 
and more subtle than the first, is refractive guiding which 
can occur even if the gain length is larger than the Ray- 
leigh range. The occurrence of refractive guiding in- 
volves the phase shift of the radiation. In the linear re- 
gime, the real and imaginary parts of the refractive index 
in) characterizing the electron beam1,2-15,16 can, under 
certain conditions, satisfy the relation Ren > 1 due to the 
phase shift even when the gain, proportional to Imn, is 
negligible. When refractive guiding dominates, the self- 
similarity of the optical beam results from the interfer- 
ence of refracted wave fronts which compensate exactly 
for diffractive losses. Since refractive guiding does not 
rely on the presence of intrinsic gain, it can occur at satu- 
ration, which can be beneficial for the performance of 
long, "tapered" FEL's. 

There have been a few experimental observations of 
optical guiding. The experiment at Los Alamos National 
Laboratory17 has shown a "bending" effect of the radia- 
tion contained in the optical resonator. Optical guiding 
influenced by gain guiding effects has been observed in 

the Stanford University FEL.18 The MIT experiment,19 

originally interpreted as evidence of optical guiding, is 
now understood to be wave-profile modification induced 
by electrostatic effects. For a valuable commentary on 
the Stanford and MIT experiments, the reader is referred 
to Ref. 20. 

Experimental evidence of optical guiding obtained 
from the Raman FEL at Columbia has been reported re- 
cently.21 The experiment is done in a highly overmoded 
waveguide, and optical guiding is detected by measuring 
the spatial "ring-down" of the amplified radiation at a 
point downstream from the termination of the electron 
beam, using a waveguide probe. The measurements show 
that optical guiding occurs in the regime of exponential 
growth, under circumstances for which the Rayleigh 
range (~2.5 cm) is considerably shorter than the e- 
folding distance of power growth ( ~ 10 cm). The ring- 
down data at saturation are much less well defined, and 
we therefore make no claim on the validity of optical 
guiding at saturation based on those data. Apart from 
the spatial ring-down data, there is independent experi- 
mental evidence for refractive optical guiding in the 
Columbia experiment based upon observations of the 
FEL sidebands. The latter is described in detail in a com- 
panion paper,"" and will not be repeated here, except for 
the remark that the diagnostic for the guiding involves 
only the specturm of the FEL radiation and is therefore 
entirely nonperturbing. In this paper, we amplify on our 
earlier work,21 and correct a flaw, pointed out by Frucht- 
man,23 in our numerical work9 which neglected the effect 
of TM modes. (Fortunately, this effect does not alter 
qualitatively our earlier interpretation and conclusions.21) 
Our present numerical results, obtained by expanding the 
optically guided waves in a complete set of vacuum 
waveguide modes, is shown to be in agreement with 
Fruchtman's analysis in the exponential gain regime. 

We now give a plan of this paper. In Sec. II, we de- 
scribe the experimental setup.   In Sec. II we formulate 

40 5081 ©1989 The American Physical Society 
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Undulator period (helical) 
Undulator length 
Electron-beam energy 
Electron-beam pulse length 
Beam current density 
Electron-beam diameter 

1.7 cm 
60 cm 
800 kV 
150 nsec 
1-2 kA/cnr 
4 mm 

Drift-tube (waveguide) diameter 18 mm 
Effective "wiggier parameter" 
FEL wavelength 

(eBw/ku.mc2) 0.2-0.4 
1.9 mm 

the nonlinear FEL equations required to study optical 
guiding in a waveguide environment by representing the 
optical wave in a complete set of TE and TM modes. 
These equations are used to simulate numerically the 
Columbia University experiment. In Sec. IV, we describe 
Fruchtman's linear fluid theory applied to the Columbia 
University experiment, and demonstrate agreement of 
this calculation with the numerical results from the for- 
mulation described in Sec. III. In Sec. V we present ex- 
perimental results together with simulation results both 
in the exponential gain regime and at saturation. ,'We 
conclude in Sec. VI with a summary and a discussion of 
the implications of our results. 

H. EXPERIMENTAL SETUP 

A schematic of the experimental apparatus is shown in 
Fig. 1 and a set of typical parameters which character- 
ized the FEL performance and geometry is given in Table 
I. The diode, accelerator, and electron-beam diagnostics 
have been described elsewhere.24 Because of the 2-mm 
wavelength, the FEL operates as a traveling-wave 
amplifier of noise which is present at its input. This re- 
sults in a statistical variation of the output power, requir- 

ing the averaging of many shots taken under nearly iden- 
tical accelerator conditions.   To preserve the axisym- 
metry of the beam termination in the large waveguide, 
the beam strikes a polyethylene "witness plate" which 
permits approximately 80% of the incident radiation to 
pass through to the detector. This radiaiton is no longer 
optically guided, but its pattern of downstream interfer- 
ence is uniquely determined by the boundary condition at 
the beam termination.   Figure 1 shows the setup where 
the spatial pattern of power in the waveguide following 
the termination of the electron beam is examined using a 
small "waveguide probe." This probe consists of a dielec- 
tric needle horn inserted into a 2-mm-diam cylindrical 
waveguide which transports the radiation to a Schottky- 
barner detector which is sensitive to short-wavelength ra- 
diation transmitted through a mesh filter. The waveguide 
probe is sensitive to radiation in a narrow forward- 
directed lobe of half-width  10°.   The electromagnetic 
(EM) fields induce a wave on the dielectric element, 
which   itself   couples   radiation    into   the   miniature 
waveguide. The design is such that radial resolution ( ~ 1 
mm) is purchased at the expense of axial resolution (~ 1 
cm).   On the other hand, we also will report measure- 
ments of the total power output of the FEL, in which 
case the waveguide probe is removed from the pipe and 
the detector is placed downstream well beyond the vacu- 
um window of the FEL. The FEL does not oscillate be- 
cause of the polyethylene plug and the absence of a high 
reflectivity surface at the end of the FEL. The position of 
the plug can be varied along the axis of the undulator. 
The experiment uses a constant magnetic field (1 T) for 
guiding and focussing of the electron beam; this magnetic 
field has almost no effect on the FEL other than to 
enhance the quiver motion of the electrons that is driven 
by the helical undulator "pump" field.  The undulator'is 
designed with an adiabatic entry and exit zone of a slowly 
varying pump field Bv   The "effective" pump strength 
parameter is defined as aw-\yvi/c\, where vx is the ac- 
tual electron quiver velocity due to the undulator. 

FIELD-IMMERSED 
VACUUM DIODE 

SOLENOID (IT) 

ELECTRON  BEAM 
DIAM*4mm, 800 kV 

UNDULATOR 

rDELRIN 
\ HORN 

—I lemk- 

li 
WAVEGUIDE 

e2mm 

IT 

Zl 
ANTENNA 

1/ 
FILTER 

(<o'1.7cm) 

WAVEGUIDE: 2R*17mm 

(*" 60cm      

SOLENOID 

1 DETECTOR 
(X<2mm) 

FIG. 1. Schematic of the experimental apparatus. 
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III. FORMULATION OF NONLINEAR EQUATIONS 
IN A WAVEGUIDE 

The linear regime and the dispersion equation for a 
FEL in a waveguide has been studied exhaustively by 
numerous authors.25,26 Our goal here is to develop a set 
of nonlinear equations for an overmoded waveguide 
which can be used to follow the time-evolution of the 
electrons and the radiation field from noise to saturation. 
From Maxwell's equations, 

c at 

c        c  at 

V-E=4TT/> , 

V-B=0 , 

(1) 

(2) 

(3) 

(4) 

where E is the electric field, B the magnetic field, p the 
charge density, and J the current density, we get the wave 
equations, 

_:_      1   B2E _, 4rr 3J 

V=B-iff-—VXJ. c- dt2 c 

(5) 

(6) 

For a cylindrical waveguide with its axis in the z direc- 
tion which is also the direction of wave propagation, it is 
sufficient to determine Ez and B2 from which the other 
.components of E and B can be calculated. We therefore 
consider the z components of Eqs. (5) and (6), given by. 

V2- 
c2 at2 

and 

V2--^ 
1   32 

c2 a?2 

E =i£v -J 

^ = _i2L(VXJ)   , 

(7) 

(8) 

where JL is the transverse current produced by electron 
motion. The FEL has a circularly polarized undulator, 
specified by a vector potential, 

An/ 
mc 

aJxcos( f"kjz')dz') 

+ysin(/\(z'Wz')] , (9) 

where m and — e are the rest mass and charge of an elec- 
tron, respectively, aw is the normalized vector potential, 
and kU)=2-/kw is the wave number of the undulator. 
We take aw and kw to be given functions of z, neglecting 
transverse variations of the undulator field since the 
electron-beam radius is much smaller than the undulator 
period. The equations of motion for the electron are 
given by 

dyj _ -ksau 

dz 
-sint^ 

H + _—-((costf)sin^,- — <sin^}cosi/>) , (10) 

drb 
j _ 

dz 
=kw+ks-ks 

dz 

1-- 
1+a2—2a,a,„cosi/': -1/2 

(11) 

Here z is used as the independent variable, y ■ is the rela- 
tivistic^ mass factor of the ;'th electron; 

tfj = J (ks+kw)dz' — (üt+q) is the phase of the y'th elec- 
tron with respect to the radiation field; cp is the phase 
shift of the radiation field; ks =co/c is the wave number of 
the signal wave and a, is the frequency; asis the normal- 
ized vector potential for the signal wave; n0 is the elec- 
tron density, assumed to be uniform at z=0, and 
cop =(4irn0e2/m )1/2 is the plasma frequency of the beam. 
The angular brackets indicate an ensemble average over 
all electrons. 

We expand Ez and Bz in a complete set of vacuum TE 
and TM waveguide modes, 

mc 
Jja,m(z)J,(vlmr)exp(il9) 
Urn 

(12) Xexp[i(klmz-cot)] , 

e     l,m   Ks 

■Xexp[i(A/mz-ö>r)] , vJ  (13) 

where 7, is the Bessel function of order / and k,m, Klm, 
lirJ and vlm are determined by the boundary conditions 
(d/dr)[J,(K,mr)]\r=R=0, J,(vlmR) = 0. Here R is the 
radius of the waveguide, and tf£,+*£,=v?«+?ta 
-co /c2. We assume that the amplitudes a,„(z) and 
clm[z) are slowly varying functions of z and neglect terms 
containing their second derivatives. From Eqs. (7) and 
(8), we get 

da,m 
22^im—r~Ji(vimr)ex]p[iUe + qlmz)] 

dz 

a'paw 
exp[i(6+ksz)] 

3r 
A-A5(r-rh (14) 

and 

*L dclm 

^2i—^rJi{K,mrkxp[iUe+k""z)] 

U~paw 
exp[i(ö+^z)] — A — A&(r — rb or 

(15) 

where rb is the radius of the electron beam and 
A=(exp[—i{rpj—q>)]/yj). We now assume that the 
quantity  A is independent 0 and neglect any poloidal 
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asymmetry of the beam, which implies that the only sur- 
viving terms in Eq. (14) and (15) are those with / = 1. We 
let a/m(z)=am(z)6u and clm(z) = c„(z)8ll and drop all 
subscripts /. We finally obtain 

m 

~dz~ 

and 

exp[Hks-gm)z]  r'b 
 :—;        dr rjJv„r)A 

R2J\HvmR)     Jo °   m 

(16) 

dcm     iama} ksK„ sxp[i(ks-k„ >*] 
dz ki    {R2-KZ2)J2(KmR\ 

xfbdrrJQ(KmR)A . 

The final step required to complete the FEL equations is 
to relate the quantities as and <f> in Eq. (10) and (11) with 
the waveguide modes. This is done by using the relations 
B = VX A and E=-(l/c)(3A/3r). The vector poten- 
tial associated with the signal is taken in the left- 
circularly-polarized form, 

.2 mc ■as[i,t )[xcos(ksz— cot +<f>) 

— ysin{ksz— at +&)] . (18) 

We then find tha 

u{T,t) = ase'* 

=-1-2 K-m   r   . _,       .    i{k   —k )z 

+ a—J0(vmr)e  ?"    ' (19) 

Equations (10), (11), (16), (17), and (19), which comprise a 
complete set, are integrated numerically to describe two- 
dimensional (2D) dynamics in a waveguide, both in the 
exponential gain regime and at saturation. As stated in 
Sec. II, the experiment uses a constant axial field for 
guiding and focusing the electron beam, which has al- 
most no effect on the FEL other than to enhance the 
quiver motion of the electrons that is driven by the heli- 
cal undulator field. This motion is included in the nu- 
merical calculation of the quiver velocity (vx/c )rmi in the 
undulator. 

The results of the numerical simulation will be present- 
ed with the experimental results in Sec. IV. In the next 
section, we describe an analytical eigenmode calculation, 
which is valid in the exponential gain regime and pro- 
vides an independent benchmark for the numerical simu- 
lation. 

IV. LINEAR EIGENMODE ANALYSIS 

The transverse profile of the electromagnetic wave 
propagating self-similarly in a FEL can be obtained by a 
linear analysis of the cold-fluid equations for electrons 
coupled with the self-consistent Maxwell's equations. In 
this analysis, it is possible to solve for the actual eigen- 

modes (and eigenvalues) of the system without the use of 
vacuum modes or of other systems of orthogonal func- 
tions. The analysis clarifies the roles of the FEL interac- 
tion and boundary conditions in the coupling of TE and 
TM sets of modes, and provides an independent check for 
the predictions of the 2D computer code. The details of 
the formalism, with and without a waveguide, are de- 
scribed elsewhere.23 Here we briefly review the analysis 
in the presence of a waveguide. The starting point of the 
analysis is the cold-fluid equations for the electrons, given 
by the continuity equation, 

-■|-(Ay) + V-(AP)=0, 
c 9r 

(17)       and the momentum equation, 

Y 3P 
c  3r + P-VP=-(}'E' + PXB') 

(20) 

(21) 

here T = yv/c, v is the electron velocity, E' = (e/mc2)E, 
B' = (e/mc2)B, x2=l + P-P, and h=co2

p/c2y is the nor- 
malized fluid density. For simplicity, we consider an un- 
tapered helical wiggler with the magnetic field, 

Bu,=5u,(rcos<I> — £sin<t>) , (22) 

where (r,9,z) represents the standard cylindrical coordi- 
nate system, and <P = d — kwz. We assume that the beam 
is thin, i.e., kwrb«l, and that the equilibrium flow is 
given by 

P = -au,(rcos$-0sin<l>) + (72-l-a2)1/2z .     (23) 

We linearize Eqs. (20) and (21), assuming the PL «Pz, 
and that the perturbed quantities vary much more rapid- 
ly along the axis than along the transverse directions., 
Any perturbed quantity 5g is represented as 

6g(r,*,r,r)=   2   Sg{n\rkxp[i(n<t> + qz-cDt)] 

where 

_3_ = _3  
dz      dz 

3  _   8 
30     3<J> 

and we define 

k:=q-!ku 

3* 

(24) 

(25a) 

(25b) 

(25c) 

We now limit ourselves to the case in which one helical 
harmonic, say n =/, is dominant. In this case 5E|" and 
OB?" are dominant, and are coupled to bhu~x\ 5Pi/-u, 
and bE'z

u~u. The continuity equation for 5/i"_1) be- 
comes 

[-yco/c + ik. +kw )PZ ]5A "- " 

=sA[/,.<a/(ye)-(fc.+fcll,)]6/'i'■~,, 

The momentum equation for 8PZ'~
]) becomes 

(26) 
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i[-yo /c + iK + kJP^bP1;'-" 

= -75£:(/-n + (c^^/(y)flu;5£'|/, ,     (27) 

where 

5£,'-/8£o 
S£L = - (28) 

We now turn to Maxwell's equations (l)-(4) in which 

p'~4-p=-hy 

and 

J' = — J=-hP . 
c 

After linearization, Eq. (3) gives 

Hkt+kw)8E?'-"=-Y8h (/-!)_ hP. 
'-8P (i-i) 

(29) 

(30) 

(31) 

Equations (26), (27), and (31) are algebraic equations for 
SA" '», S^'"», and SE:U~U. The /th harmonic of the 
perturbed transverse current is obtianed from the relation 

W^W^-QSE™ . /(32) 

where 

hal(kz+kw-coPz/rc) 
Q = 

M[(kz+kw)P:-yco/c]2-h(l+a2)\ 
(33) 

Thus, the expressions for 5/;(/) are as if the system is one 
dimensional. The transverse dependence, however, ap- 
pears in 8pU) and SJ'.'K From the /th harmonic of Eq. 
(20), and the longitudinal component of Eq. (21), it can be 
shown that23 

7 
H k.P7 - 

and 

yeo/c 
d_ 
dr 

1-1 (fiS^'i") (34) 

5/;("^-- _§_ 
dr 

(/-l) 
(Q8E'in).     (35) KPz~y<o/c 

From the transverse components of Eq. (5), we obtain 

35£i" 

r dr dr 

+ 2L — 12_ü_zr_L2i   ^ ^ 
c r~ c 

&E'i!)=0,      (36) 

and 

1JL 
r dr 

asri/' a-     ,.     (/ + D2 

2 * i 5£ '(/)_ 0 . 

(37) 

After further simplification, Eqs. (36) and (37) reduce to 

-9L + 1A_Ü . si 
dr2 .   r dr     r

1^ c2 

and 

-k} (5£:,/, + /5£;,/,) = 0    (38) 

J.2 

dr 
J__9 /"    ,   CÜ2       ,2      CO 

2  '   r dr     r2      c 
j-kl-2-Q 

X(55;(/,-/5£z'(/)) = 0,      (39) 

which are coupled by virtue of the boundary conditions, 

5£;=o,   ^52?2' = 0, (40) 

at r=R. In the vacuum limit ß=0, Eq. (38) and (39) 
reduce to the standard decoupled equation for bB'z and 
8£j' describing TE and TM modes. Using the conditions 
(40) and the jump conditions at r = rb

21, we obtain the 
dispersion equation (for Q¥=0), 

[^LRJ1(klR)Yl{k1rb)-\][sJ,_l{srb)J:_,(kirb)-kiJ!_i(klrb)J!_l(srb)) 

where the overdot in Eq. (37) denotes a derivative, and 

k2=co2/c2-k2 , (42a) 

s2 = k2-(co/c)Q . (42b) 

Here w is given aproximately by the formula 

0) = 2/ca.c72/(l+a2) , (43) 

well-known from one-dimensional theory. Equation (41) 
can then be solved numerically to determine the eigenval- 
ue. 

We now compare the results of this analysis with pre- 
dictions from the 2D computer code described in Sec. II. 
We take the electron-beam current to be 2 kA/cm2, 
rb=0.2 cm, R =0.9 cm, 7 = 2.5, and aU)=0.3.  Equation 

(41) then gives, for / = 1 and co/c =32.9 cm-1, the eigen- 
value for the most unstable mode to be A:2 =32.8-/0.052 
cm-1. For the same set of parameters the 2D code gives 
a/c = 33.0 cm-1 and a growth rate of 0.056 cm-1, which 
is in good agreement with the imaginary part of k, quot- 
ed earlier. It is interesting to note that if the TM modes 
in the 2D code are artificially "switched off" by setting 
cm =0, the growth rate is reduced slightly to 0.052 cm-1. 
Thus, for typical operating parameters of the Columbia 
University FEL, the neglect of TM-mode coupling does 
not have a large effect on the growth rate of the FEL 
eigenmode in the exponential gain regime. The effect of 
TM-mode coupling is more pronounced during spatial 
"ring-down" which we will describe in the next section. 

Figure 2(a) shows 5£ = |6E| (with arbitrary normaliza- 
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1.5H 
  FEL mode 
    TEij mode 
 TMJJ mode 

FIG. 2. (a) 8E of the FEL eigenmode is compared with 8E 
for the TE„ and TM„ vacuum modes. The FEL mode has a 
mixed character, (b) |5£r| and \SB,\ of the FEL mode. 

tion) of the FEL eigenmode as a function of r. The result 
of the 2D waveguide code is essentially identical with this 
curve. For comparison, we also show the radial profiles 
of 5£ for the TE,, and TMn vacuum modes. Figure 2(b) 
shows the longitudinal wave components 5E. and 8B, of 
the FEL mode. We note that they are of'comparable 
magnitude, signifying the mixed character of the eigen- 
mode. 

V. EXPERIMENTAL RESULTS AND COMPARISON 
WITH NUMERICAL SIMULATION 

A.  Linear regime of exponential growth 

The experiment is first operated in the regime of ex- 
ponential growth. Given the noise level of the input and 
the length of the undulator, we find that the interaction 
remains in the linear regime over most of the undulator 
for aw <0.3. Figure 3(a) shows the wave profile that re- 
sults from the numerical computation of power growth 
and guiding along the electron beam in the overmoded 
waveguide for aw =0.3, with other parameters as they are 
in Table I. We start the simulation with zero initial radi- 
ation field and noise generated by the random distribu- 
tion of electrons in phase. The wave profile shows the ex- 
pected features of exponential growth and profile narrow- 
ing (which enhances the filling factor) as the wave moves 
down the undulator.   When the electron beam is ter- 

minated by the polyethylene beam stop, the optically 
guided power is released from the beam and radiates in 
the empty drift-tube waveguide, which contains the 
probe. The FEL eigenmode breaks up into many vacuum 
eigenmodes that display a characteristic spatial interfer- 
ence ("ring-down"). Our experiment measures the spatial 
profile of the ring-down. The computed ring-down 
(viewed from a downstream point) is shown in Fig. 3(b). 

The measurements .previously reported21 are now 
presented in Fig. 4, together with the prediction of theory 
(indicated by solid lines). The plots from theory now con- 
tain the TM as well as the TE set of modes, whereas in 
Ref. 21 only TE modes were retained. The computed dis- 
tribution of power taken at r=0 along the axis [Fig. 4(a)] 
shows major differences with respect to the result 
presented earlier [Fig. 4(a), Ref. 21], yet the fit of the data 
to theory is neither better nor worse than the earlier fit. 
Perhaps this can be anticipated in a highly overmoded 
system such as ours, in which the "sloshing" characteris- 
tic of the interference pattern can be reproduced approxi- 

O45 

km) 
0.90    JV 

0.010-, 

^0.90 °A,„ncB   r(cm) Rodiol distance 

FIG. 3. (a) Wave profile in the exponential gain regime for 
aw -0.3, with other parameters given in Table I. (b) Computed 
ring-down pattern for the parameters of (a) when the electron 
beam is terminated at z =50 cm. 
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mately even if a truncated set of modes are considered. 
Figures 4(b) and 4(c), taken at the axial power minimum 
and maximum, respectively, show essentially no change 
m the calculated radial distribution of power when com- 
pared with the corresponding curves in Ref. 21. The nu- 
merical study shows the field profile at z =20 cm is near- 
ly the same as that at z =0. (The experimental data are 
the same as in Ref. 21.) By moving the beam stop and re- 
peating the measurements, we have verified that the 
profile remains  self-similar.   The data for the radial 

profile [Figs. 4(b) and 4(c)] display the features expected 
from theory. 

The theory predicts that optical guiding is weak for 
aw <0.2. It is interesting to compare Fig. 4(a), obtained 
by taking ^=0.3, with Fig. 5, which shows the power 
on axis for aw =0.2. The axial variation in the latter case 
falls within the error bars of the data, which suggests that 
the "sloshing" is much less pronounced than that ob- 
served in the well-guided case. 

It is useful to contrast our experiment with a similar 

"1     I      I      I      I      I      I      | 1 1 1 1 1 1 , 
4 8 12        16        20       24       28 

Axial   distance   z  (cm) 

in SS^wuÄS^Ä^rf wi:h theory;i°iid iines) from Fi§- 3=the ^™™* <«. are the <*«*<»■ »^ 
the termination ^^^"^^^^^ **? ^ ^^.^ °f »<«** •*>"* the z axis behind 
the intensity at z = 65 cm   Dashed ineTEm^i'      . H ,      d^endence of the '"tensity at z = 58 cm. (c) Radial dependence of y oj cm. uasned line, TE,, mode only; solid line, theory curve at axial maximum. 
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one by Masud et al.26-21 using the same apparatus.   A 
much smaller diameter (6.4 mm) waveguide was used; 
however, the wavelength, beam diameter, and current 
were nearly the same.  One expects that optical guiding 
would be comparatively unimportant in this case. It was 
found that the observed growth rate agreed well with the 
theory given in Ref. 25 which predicts TE,, to be the 
only dominant mode in the   linear regime.   This could 
occur only if optical guiding were not important.   We 
now compute the FEL eigenmode in accordance with the 
analysis in Sec. Ill for this case.  To be specific, we take 
rb=0.2 cm, R=0.n cm, y = 2.5, a^-0.3, and  the 
current density to be 1 kA/cm2.  Equation (41) then pre- 
dicts <y/c=28.85 cm-' and an amplitude growth rate 
= 0.091cm-1 for the most unstable mode.   In Fig. 6(a), 
we plot \5B2\ and |8£j for the FEL mode in this case for 
comparison with the guided case described by Fig. 2(b). 
Whereas |82?r| and \SEZ\ are comparable in Fig. 2(b), 
\8E2\ is less than 10% of \8BZ\ in Fig. 6(a).  Hence, the 
presence of TM modes is minimal in the composition of 
the FEL eigenmode in the small waveguide. As shown in 
Fig. 6(b), the FEL eigenmode is almost identical to the 
TEn mode, and we confirm that optical guiding is indeed 
insignificant. 

Since refractive guiding occurs in our experiment due 
to the interference of many modes, we can "switch off" 
the guiding effect in the computer code by decoupling 
artificially the waveguide modes (that is, each mode is 
made   to   interact   with   the   electrons   independently). 
Since this "switch" is not experimentally realizable, it is 
necessary to validate it by actual comparison with experi- 
mental data for a weakly guided case. This has been done 
in the companion paper,22 and will not be repeated here. 
We compare in Fig. 7 the results of calculations for the 
dependence of the power growth rate upon the undulator 
field, with and without optical guiding. Without guiding, 
the growth rate increases linearly with the magnitude of 
the undulator field, as expected in the Raman limit. With 
guiding, the growth rate increases faster, particularly at 
higher pump field.   The reason for this is that optical 
guiding improves the filling factor (/), which in turn 
enters the expression for the growth rate in ID theory as 
ful. Measurements of the growth rate, however, also in- 
dicated in Fig. 7, are not sufficiently accurate to fit unam- 
biguously either curve. Thus, although the experimental- 
ly observed growth rate roughly validates the theory, the 
weak / dependence is experimentally difficult to verify. 
Nevertheless, the additional gain from optical guiding, 
when integrated over the length of the undulator, results 

3  - 

2   - 

FIG. 5. Dependence of intensity along the z axis behind the 
termination point (z = 50 cm ) of the electron beam for the case 
of weak guiding (ou,=0.2). The axial variation falls within the 
error bars of the data, which suggests that the "sloshing" is 
much less pronounced than in the guided case [Fig. 4(a)]. 
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FIG. 6. (a) |5£j and \&B,\ of the FEL mode for the experi- 
ment with a smaller waveguide of radius 0.32 cm. |5£z| is less 
than 10% of |SJ?r|, the FEL mode is dominantly TEU, and opti- 
cal guiding is insignificant, (b) 8£ of the FEL mode for the pa- 
rameters of (a) compared with the vacuum TEn and TMn 

modes. The FEL mode is almost identical to the TE, { mode. 
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in an appreciable improvement in overall signal gain. 
Figure 7 shows that the most rapidly growing signal 
(from noise) in our experiment corresponds to the optical- 
ly guided mode. 

B. Saturation regime 

As explained in Sec. I, refractive guiding, since it does 
not rely on the presence of intrinsic gain, can occur at 
saturation. In Ref. 22, the presence of guiding at satura- 
tion is shown to enhance somewhat the shifts of the side- 
bands (with respect to the carrier) as well as their growth 
rates, though the effect of guiding at saturation is found 
to be weaker than that in the exponential gain regime. 
Here we report on alternate experimental attempts to ob- 
serve refractive guiding at saturation. 

The theory predicts that when the pump field is in- 
creased to am=*QA, the amplified wave will saturate ap- 
proximately two-thirds of the way down the undulator. 
To insure saturation on all shots, we use an undulator 
with a slight (and unoptimized) taper (11%) beginning 
half way along its total length of 70 cm; the power grows 
by roughly a factor of 2 along this tapered region. 

Typical experimental data for the spatial ring-down 
following a beam stop are shown in Fig. 8. In Fig. 8, we 
note that the axial ring-down shows a much weaker 
"sloshing" behavior than that in Fig. 4(a). We give here 
a possible explanation as to why it may be difficult to 
have a conclusive demonstration of refractive guiding in 
the presence of a waveguide. As the signal passes into 
saturation, some power is lost from the optically 
confined, guided profile and moves out to the wall; this is 
illustrated by a numerical solution (Fig. 9) in which the 
signal saturates at z = 50 cm. From there, it "sloshes" to 
and fro in the waveguide, interfering with the electron- 
radiation interaction occurring near the axis. The waves 
reflected from the wall are generally out of phase with 

0.20 -, 

FIG. 7. Experimental data (points) of the power growth rate 
r as a function of a.M compared with theory (solid lines). The 
"guided" curve is calculated with modes coupled, the "unguid- 
ed" curve with modes decoupled. 
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FIG. 8. Dependence of the intensity along the z axis mea- 
sured from the termination point (z = 50 cm, Az =0) of the elec- 
tron beam (top frame) and the radial distribution of intensity at 
Az =20 cm (bottom frame) at saturation. 

respect to the ponderomotive wave, and can interfere des- 
tructively with the latter, causing a local detrapping of 
the electrons from the ponderomotive bucket. In particu- 
lar, we find that if an artifical phase shift is introduced at 
some point into the ponderomotive wave, an expansion of 
the downstream optical beam results. (Furthermore, the 
power released from the beam upstream also interferes 

0.10 0*    ft/, 

FIG. 9.  Wave profile in a waveguide from start-up to satura- 
tion for aw =0.3, with other parameters given in Table I. 
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FIG. 10. Wave profile in empty space from start-up to satu- 
ration. The wave profile remains approximately self-similar at 
saturation. 

with the radiation of the remaining guided power in the 
ring-down zone, resulting in a less well-defined spatial in- 
terference pattern for the experiment to detect.) On the 
other hand, if the experiment were done in empty space, 
Fig. 10 shows that though some power is lost from the 
beam as saturation occurs, it does not return to interfere 
with the FEL interaction. The profile downstream does 
remain approximately self-similar as it propagates, as re- 
ported by Scharlemann et al.* using shorter wavelengths. 
This leads us to conclude that our failure to observe opti- 
cal guiding following saturation may be an artifact of the 
boundary conditions imposed by the waveguide 
geometry, and that a short-wavelength FEL experiment 
operating without a waveguide may find a remnant opti- 
cal guiding occurring under saturation or slow growth 
conditions. 

VI. CONCLUSION 

In this and a companion paper,22 we have attempted to 
validate the concept of refractive optical guiding by com- 
paring theoretical (numerical) predictions with experi- 
mental observations in the Columbia University FEL. In 
the presence of a waveguide, the theory of optical guiding 
has certain interesting features, and we have presented in 
this paper two complementary methods—numerical and 
analytical—for the theoretical study of guiding in the ex- 
ponential gain regime. We show that the two methods 
agree well in their predictions, and give us confidence in 
extending our numerical studies to the nonlinear regime. 

As in Ref. 21, we believe we have presented firm, if in- 
direct,  evidence of the occurrence of optical guiding 
strongly influenced by refractive guiding effects in the re- 
gime of exponential gain.  Refractive guiding is a subtle 
effect, and our approach has been to accumulate a de- 
tailed corpus of theory and experimental data, each of 
which adds incremental evidence in support of the con- 
cept.  In the saturation regime, the experimental results 
presented in this paper are not conclusive, and the nu- 
merical studies suggest that the reason for this has to do 
with the experimental conditions, together with a weak- 
ening of the guiding effect expected from theory. (Obser- 
vations of the sideband shift in the saturation regime, 
presented in Ref. 22, also indicate a weakening of the 
guiding effect.) We have given plausible arguments as to 
why some of the loss of guiding we observe at saturation 
may be attributed, somewhat paradoxically, to the pres- 
ence of a waveguide. Based on these physical arguments, 
it is tempting to speculate that it may be possible to have 
a more convincing demonstration of refractive guiding in 
the saturation regime in a short-wavelength FEL experi- 
mental facility. 
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Effects of optical guiding on sideband instabilities in a free-electron laser 
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The effects of optical guiding on sideband instabilities in a Raman free-electron laser (FED are 
studied numerically and experimentally. An axisymmetric two-dimensional (2D) computer code 
that includes the effects of space charge and diffraction in an overmoded waveguide is developed to 
simulate sideband growth in the Columbia University FEL, which generates radiation of millimeter 
wavelength. It is found in both the simulation and the experiment that the effect of refractive opti- 
cal guiding, which slows down the radiation group velocity, shifts the sidebands away from the sig- 
nal carrier. We also find numerically that refractive optical guiding enhances the filling factor of 
the electron beam and perturbs the electron distribution, and thereby increases the sideband growth 
rate. We show that the sideband growth rate can be depressed by tuning the FEL so that the real 
part of the effective index of refraction associated with the electron beam decreases The effect of 
wiggler tapering on the sideband growth is also studied with the 2D code. A significant reduction in 
the sideband growth rate in an efficiency-enhanced wiggler has been demonstrated and is qualita- 
tively consistent with experimental measurements. 

I. INTRODUCTION 

Free-electron lasers (FEL's) use intense, relativistic 
electron beams and magnetostatic wigglers to generate 
tunable, high-power radiation. The power and efficiency, 
however, are limited by the fact that as the electrons lose 
energy to the radiation, the resonant condition required 
for the energy exchange is lost. Improved efficiency is 
made possible by employing the variable parameter 
wiggler,1 in which the wiggler period or strength is ad- 
justed so that the resonant condition is satisfied even after 
saturation. However, the growth of parasitic sideband 
oscillations at saturation poses a major problem for FEL 
performance. The sideband instabilities are caused by the 
Raman scattering of the signal radiation from the syn- 
chrotron oscillations executed by the electrons which are 
trapped in the ponderomotive potential well. The growth 
of sidebands leads to the detrapping of electrons from the 
ponderomotive buckets,2 so that further energy extrac- 
tion from the detrapped electrons is impossible. 

In order to control the sideband growth in FEL oscilla- 
tors, gratings may be used as part of the resonator to 
physically separate the different frequency components of 
the radiation field so that only the carrier reenters on the 
FEL axis. Other than a sophisticated optical system, this 
method requires a sufficiently large separation between 
the sidebands and the carrier in the spectrum. One of the 
conclusions of the present paper is that optical guiding 
can enhance the separation between the carrier and side- 
bands, and thus make the task of sideband control some- 
what easier. 

Experiments3 have demonstrated that a slight change 
in the radiation group velocity can cause a shift of side- 
band frequencies. The sideband frequency cor is related 
to the group velocity v  by the formula3 

Aco 
CO 

l~v„/c 

l—v„/va 

N, synch 

N (1) 

where co is the carrier frequency, u„ the axial velocity of 
electrons, c the speed of light in vacuum, Wsynch the num- 
ber of synchrotron periods in the wiggler, and N the 
number of wiggler periods. It is clear from Eq. (1) that a 
slight reduction of vg will shift sidebands away from the 
carrier. When v^vg, suppression of sideband instabili- 
ties is expected.4 

Recent studies m FEL's indicate that the presence of 
optical guiding1-5  7 can, under certain conditions, slow 
down the radiation group velocity.   A preliminary one- 
dimensional (ID) calculation by Johnston et a/.8 for an 
untapered FEL amplifier operating in the exponential 
gain regime suggests that the condition v^vg can be met 
in  the  presence  of strong  refractive optical  guiding. 
However, Ref. 8 correctly emphasizes that the analytical 
results in the exponential gain regime are not strictly val- 
id at saturation where sideband growth is significant. 
One of the conclusions of our numerical and experimen- 
tal studies in an untapered FEL is that space-charge and 
saturation   effects   weaken   significantly   the   beneficial 
effects of optical guiding on sidebands anticipated by 
linear theory. In fact, the condition v^vg is not satisfied 
in normal regimes for FEL experiments except in the 
strong-diffraction limit.   A preliminary report of these 
studies has been presented recently,9 and is qualitatively 
consistent with an independent analytical study by An- 
tonsen and Laval.10 

As stated earlier in this paper, the control of sideband 
instabilities in tapered FEL oscillators is a subject of con- 
siderable theoretical and experimental interest.11 We 
have carried out numerical simulations and experiments 
m the millimeter-wavelength Raman FEL at Columbia 
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University, which uses an overmoded waveguide, and a 
simple, linearly tapered undulator. The experimental re- 
sults, which show a reduction of sideband growth in a ta- 
pered FEL oscillator, are corroborated by the numerical 
simulations. Furthermore, our simulations indicate that 
the electron distribution is sensitive to the presence of op- 
tical guiding. Hence, quantitative analytical estimates of 
sideband growth which use simple models for the elec- 
tron distribution, are likely to be inaccurate. 

We now give a plan of the paper. In Sec. II we de- 
scribe the dynamical equations used and the computa- 
tional model. In Sec. Ill, we describe the results of nu- 
merical simulations and, where applicable, compare them 
with the results of recent studies. In Sec. IV we report 
spectroscopic studies of the sideband spectra in the Ra- 
man FEL in the presence of optical guiding, and we con- 
clude with a summary in Sec. V. 

II. DYNAMICAL EQUATIONS 
AND COMPUTATIONAL MODEL 

A very effective method frequently employed in FEL 
studies is numerical simulation. Recent numerical stud- 
ies of FEL sidebands have mainly taken two approaches. 
One method12 solves the FEL equations in a "window" 
that travels down the wiggler with the speed of light and 
assumes that electrons slip to the back of the window; in 
the other method,13 one solves the time- and space- 
dependent FEL equations and treats the sidebands as the 
time modulation on the radiation amplitude. The former 
model is computationally efficient but the treatment of 
slippage is somewhat artificial, especially when the group 
velocity of the radiation is not predetermined. Therefore, 
we will follow the latter method of simulation. 

We consider a Raman FEL having a circularly polar- 
ized undulator, specified by a vector potential in a coordi- 
nate system in which the z axis lies along the axis of the 
undulator, 

A... 
mc 

xcos fXdz']+ysin \rkwdz' 

(2) 

where m and -e are the rest mass and charge of an elec- 
tron, respectively, aw is the normalized vector potential, 
and kw=2ir/Xu, is the wave number of the undulator. 
Here we have assumed that kw and aw can be functions 
of z and the electron beam radius is taken to be much 
smaller compared with the undulator period so that the 
transverse variation of the undulator field can be neglect- 
ed. The electron motion in such an undulator in the pres- 
ence of signal radiation is governed by the equations 

dYj _     K<*w«, 
dz y, 

2col 

sin*, 

+ T—i-(<cos¥>sin¥;-<sin¥>cosvP/.) ,     (3) ksc 

dV 

dz 
i _ K + k,-k,/ 

l+«*-2aIga,cosy/ 

rj 
3£ 
dz  ' 

1/2 

(4) 

Here z has been used as the independent variable, y • is 
the y'th electron's relativistic mass factor, Vj = fz

0(ks 

+ kw)dz'-cotj+(f>(r,tj) is the yth electron's phase with 
respect to the signal wave, tj is the time this electron 
reaches z, <f> is the phase shift of the signal wave and 
determines refractive optical guiding, ks=co/c is the 
wave number of the signal and as its normalized vector 
potential amplitude, cop = (4Trne2/m ),/2 is the plasma fre- 
quency associated with the electron beam, and the angu- 
lar brackets indicate ensemble average. The second term 
on the right-hand side of Eq. (3) describes the effect of 
space charge. 

The wave equation for the signal driven by the electron 
current can be derived from Maxwell's equations and is 
given by 

V2- 
c2 a?2 

and 

C2   dt2 

__ 4-TT   3J    .    477" _,„   _, 
E= — — + — V(V-J) 

c   dt      la 

B=-^VXJ, 
c 

(5) 

(6) 

>w-$) 

where the transverse components of the current density 
can be written in terms of the electron parameters, 

JE/T r|,(M-"'\_mc2 to)aw ><v , ,A,/e „   ^Jie / r—(x + zy)(  
c e      c

2 \       y 

(7) 

The Columbia University FEL, which operates at mil- 
limeter wavelength, uses an overmoded waveguide to re- 
tain the radiation and yet allows optical guiding to 
occur.14 Accordingly, we expand Eqs. (5) and (6) in a set 
of vacuum TE and TM waveguide modes, 

„2 
E = 

mc X^tvy.tv^ie^'"«2-"" 

B=-i 
.mc k 

L-rcm^)Jx{Kmr)e'ee    m 

(8) 

(9) 

where /, is the first-order Bessel function, km, K„, qm, 
and vm are determined by the boundary conditions 

d_ 
dr 
—Jl(Kmr) JAvmR)=0 

and 

k2
m+K2

m=q2
m+v2

m=co2/c2 

R is the radius of the waveguide, and am,cm are the slow- 
ly varying mode amplitudes. For simplicity, we have as- 
sumed that the term in angular brackets on the right- 
hand side of Eq. (7) is independent of 9, so that only 
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modes with the dependence exp(/0) are driven by the hel- 
ical current. 

Substituting Eqs. (8) and (9) in Eqs. (5) and (6), respec- 
tively, and using Eq. (7) and the orthogonality property 
of the Bessel functions, we obtain the equations for the 
coefficients of the waveguide modes, 

1  3     <Jmc a 
c dt       co   dz 

c 3f       co   dz 

..<fo»V|»e*p[''(*j-ginte] 

ccoR\j\(vmR)f 

(10) 

■   fi>p«H.^*B.«p[l(^-fem)2] 
1 c2k2

m(R
2-\/K

!
m)[Jl(KmR)}2 

XF(/cm), (11) 

where 

F(x) = /' 
hi e-«*-*) 

)'o' xr)r dr , (12) 

and we have assumed a step distribution for the radial 
electron density 

n(r) = 
'o» r*>r>0 

0,   /•>/-, (13) 

If the electron distribution has an explicit radial depen- 
dence, the plasma frequency cop in Eqs. (10) and (11) 
should be included in the integrand of Eq. (12). Also, the 
second-order derivatives of am and cm in Eqs. (10) and 
(11) have been neglected. 

The final step required to complete the FEL equations 
is to relate the quantity as and <j> in Eqs. (3) and (4) with 
the waveguide modes. This is done by using the 
definition of vector potential, VX A = B, and E=—(1/ 

c)(3 A/3f). The vector potential associated with the sig- 
nal is taken in the left-circularly polarized form (the 
right-circularly polarized component does not couple 
with the FEL but is included in the calculations of total 
radiation power and local signal electric field.) We take 

mc 
Aj = as(r,t)[xcos(ksz—cot+<f>) 

and find that 

a(r,f)=a,e''* 

=—2 

—y sin(ksz — cot+<f>)] 

"1  r /        ,  '(*m
_*,te 

, "m   r  . .   Hq„—k.)z 

(14) 

(15) 

Then, Eqs. (3), (4), (10), (11), and (15) comprise a com- 
plete set of equations which can be solved numerically. 

Before moving on to the numerical simulations, we 
simplify the equations further by making the variable 
transformations13 

X = a 

where 

t -z 
kxc

2 Y = a : — t (16) 

a=c I 
_c a 
V     ck 

Lw is the undulator length, and V is the average electron 
axial velocity. In terms of the new independent variables, 
Eqs. (3), (4), (10), and (11) take the following form: 

dyAX, Y) ksasaw ^2.LW   , 
— - = -Lw sin*.- + —^-5-(<cos*>sin*:-<sin*>cos*,) , dX 

cWj(X, Y) _ 

3* 1 k,„ + K-K/ 

3 \-qm/kx      3 

dY qmc2/coV-l dX 

3 \-km/kx      a 
3F kmc2/coV-l dX 

Kc1 

l+a'-2a,„fl.cos*( 

rj 

1/2 

dx 

ic        arawvm exp[ i (ks-qm)z] 
am = e- : F(vm) , 

a ca>R2[J\(vmR)]2(qmc2/mV-l) 

ic       a2pawksKnexp[i(ks-km)z] 

a c2k2
m(R

2-\/K2
m)[J,(KmR)]2(kmc2/coV-\) 

F(Km). 

(17) 

(18) 

(19) 

(20) 

We note that for the TEn mode for which km=ku the 
term containing the X derivative in Eq. (20) drops out. 
Thus, the variables chosen are such that electrons move 
along lines of constant Y, and the TE,, mode is propagat- 
ed along lines of constant X. The other modes are in- 
tegrated along their characteristic curves in the X-Y 
plane. These curves are straight lines with different 
slopes for different modes; hence the lines starting from 
the same initial point will terminate at different points at 

a later time. Higher-order interpolations are thus neces- 
sary to calculate the field u if any of the characteristic 
lines do not fall at the grid point where u is needed for 
computing the electron motion. The domain of integra- 
tion is indicated by the cross-hatched region in Fig. 1. 

To avoid the problem of infinite time limits when solv- 
ing the equations, a periodic-boundary condition is im- 
posed in time, with the period T — 2ir/Aco, where 
Aco=\co~cor\ and cor is the sideband frequency.   This 
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FIG. 1. Domain of integration in X and Y for Eqs. (17)-(20) 
indicated by the cross-hatched region. Here X{ =2ira /Aco. 

treatment is essentially the same as that used in Ref. 12. 
By using this periodicity condition, however, we have 
only taken into account the discrete frequency com- 
ponents co±k\co, where k is an integer, and the price for 
the economy in computer time is the loss of information 
of the other frequency components. 

III. SIMULATION RESULTS 

We first use our ID code, which is described in our 
earlier paper, to calculate the group velocities of the sig- 
nal radiation under various conditions and compare with 
values8 calculated from the ID linear theory of Johnston 
et al. which does not include the effect of space charge. 
The parameters used are listed in Table I (the waveguide 
and transverse parameters are not used). The group ve- 
locity is computed by running two simulations with 
slightly different signal frequencies, a>, and co2, around the 
maximum gain frequency, taking the slopes of the two 
<p-z curves and using the definition, 

dco 
dk 

Sa> 

8a/c+8(d<j>/dz)      l+c§(d<t>/dz)/S(0 

(21) 

^ert5co = (ül-Co2,8(d<f,/dz) = (d<l,/dz)l-(d<f,/dz)2. 
The calculated results are displayed in Table II.  We 

TABLE I. FEL Parameters. 

Undulator period (helical) 
Undulator length 
Electron beam energy 
Electron beam current density 
Electron beam diameter 
Electron beam pulse length 
Waveguide (drift tube) diameter 
Effective wiggler parameter aw 

FEL wavelength 
Synchrotron period 
Power output 
Configuration  

1.7 cm 
70 cm 
800 kV 
~2 kA/cm2 

4 mm 
150 nsec (20 passes) 
18 mm 
0.2-0.4 
2 mm 
~20 cm 
Several MW 
Oscillator 

TABLE II. ID group velocity calculation. 

Condition 

Linger theory of Ref. 8 
Simulation results: 

Linear regime without 
Linear regime with 

Group velocity vg/c 

space charge 
Linear regime with space charge 
Saturated regime without space cl — --0— ...t>.„Uv space charge 
Saturated regime with space charge 

0.936 

0.943 
0.959 
0.955 
0.961 

note that our ID simulation result in the linear regime 
without the space-charge effect [that is, the second term 
on the right-hand side of Eq. (17) is dropped] agrees 
reasonably well with the analytical result of Ref. 8   But 
the inclusion of both space charge and saturation tend to 
increase the group velocity.  A 2D simulation (including 
the waveguide and transverse parameters in Table I) gives 
an even larger group velocity of vg/c, equal to 0.972 
Since the space-charge and 2D effects are important, in 
general, and the sideband instabilities become the most 
prominent in the saturation regime, we conclude that the 
effect of optical guiding on sideband shifts is much weak- 
er than anticipated in Ref. 8. 

In our 2D simulations, we again use the parameters in 
lable I. The electron beam is assumed to be monoener- 
getic and uniformly distributed in V from —IT to jr. The 
carrier frequency and initial amplitude are chosen so that 
the system has the maximum gain in the linear regime 
and saturates at about the middle of the first pass along 
the undulator. The simulations show that the qualitative 
features of the radiation mode structure at the output 
does not depend sensitively on the input mode structure. 
In what follows, we use a TE„ mode as the input, and 
also include small TE„ sidebands at frequencies ö>±Aö. 

We remark that the inclusion of evanescent modes does 
not alter our results, and therefore we only include modes 
with real km and qm in the computations. 

The sideband growth rate spectrum is obtained by 
making a series of runs in which the sideband frequency 
is "tuned" by varying the time period T. In each run, the 
sideband amplitude is calculated by Fourier decomposi- 
tion 

ar(r,±Aü>)= / dtu(r,t)e±iAa" 
1 
T->o (22) 

The sideband growth rate at each frequency is then ob- 
tained by averaging the sidebands over five passes. 

One of the goals of this paper is to compare the struc- 
ture of the sideband spectra with and without optical 
guiding. Since refractive guiding occurs essentially due 
to the interference of many modes in our experiments, we 
can "switch off" the guiding effect in the computer code 
by artificially decoupling all the waveguide modes (that 
is, each waveguide mode is made to interact with the 
electrons independently.) Experimentally, of course, this 
switch" is not realizable. Hence, in order to validate 

our method, we compare the results of two simulations 
(of coupled and decoupled waveguide modes) with the 
pump field held fixed at the reduced value aw=0.2 for 
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which the guiding effect is expected to be weak.   The 
group velocity at this low pump case is found to be al- 
most equal to c, and the effect of optical guiding is negli- 
gible. Then, in this case, the results of simulations with 
coupled modes and decoupled modes should be very simi- 
lar, and indeed they are, as shown in Fig. 2, which plots 
the sideband growth rate spectra from the 2D simula- 
tions. The solid curve corresponds to simulations with all 
modes coupled and the dotted curve to the simulations in 
which the optical guiding effect is switched off, and the 
two curves appear to be very close to each other.  The 
reason that decoupling the waveguide modes in the simu- 
lations is an effective way to "switch off" optical guiding 
is because each waveguide mode has a different longitudi- 
nal wave number, and only the mode that satisfies the res- 
onant condition is driven by the FEL mechanism direct- 
ly; the comparable growth of the other modes, which is 
essential for the wave profile modification, must be due to 
the  nonlinear coupling  with   that  directly  interactive 
mode via the electrons.  Therefore, when the modes are 
decoupled, refractive optical guiding in this waveguide 
system will become impossible. 

Figure 3 shows the sideband growth rate spectra from 
similar simulations with a higher pump field a =0.3. 
The shift in the sideband frequencies with respect to the 
carrier is clearly enhanced by the effect of refractive opti- 
cal guiding. But what is surprising at first glance is that 
the sideband growth rate with optical guiding is also 
higher than that without optical guiding. The result also 
indicates that the effect of optical guiding on the side- 
bands is generally asymmetric—for the case presented 
here, the effect on the lower sideband is more pronounced 
than that on the upper sideband. 

The qualitative features of the above results are further 
confirmed with simpler ID simulations in which no 
waveguide is involved, waves are assumed to be plane 
waves, and the electron beam has infinite extent in the 
transverse dimensions (readers are referred to Ref. 8 for a 
full description of this ID code). The results of these ID 
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FIG. 2. Sideband growth rate spectra at saturation from 2D 
simulations with a low pump field of aw=0.2 and a constant- 
period undulator. 

 with guiding 
 without guiding 

Ak/ks(%) 

FIG. 3. Sideband growth rate spectra at saturation from 2D 
simulations with a higher pump field of aw=0.3 and a 
constant-period undulator. 

simulations are shown in Fig. 4. The dotted curve here is 
again that obtained with the optical guiding switched off. 
In this ID case, the recipe for switching off the optical 
guiding is more straightforward, and involves replacing 
exp( -/*y.) in Eqs. (7) and (12) by ( -i sin*y). Such a re- 
placement is equivalent to setting <f> constant and yet con- 
serves the total energy of the system. We note in Fig. 4 
that when the refractive guiding is switched off, the upper 
and lower sidebands become exactly symmetric. This 
symmetry is entirely a mathematical artifact and can be 
understood through the following arguments: Since </> is 
taken to be a constant, when exp(—/*.) is replaced by 
— /sinty, *' iT -    •    •    -—-••- *j, the wave equation in the ID limit becomes 

_3_ + ±A 
dz      c dt 

a.(z,t) = 
afa  /_sin*\ 
2ksc

2\   r   I 
(23) 

Denoting as(z,t) = al°)(z)+a{
r 

+ \z)e~iA'ü'+ai
r''

)(z)e^ü" 
+ • ■ ■ (a sum of Fourier components), we can write Eq. 
(23) for the fundamental sideband amplitudes as 

o 5 
Ak/ks(%) 

FIG. 4.  Sideband amplitude spectra at saturation from ID 
simulations with a constant-period undulator. 
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,(±)- 
3z* 

i Ac»   ( + ) cojaw 

2ksc
2 L dte± 

the imaginary part of which is given by 

,(±i_. 
aja 

4irk 
w   rT /sin*\ 
— f   dt sin(Aof)(- 
sc
Jo \ / 

,A„„/ sinV \ ^ 

(24) 

(25) 

.<->=„<-) Thus, a; 
The above results are also in qualitative agreement 

with a recent analytical theory due to Antonsen and La- 
val.10 In their paper, the sideband growth is calculated 
for different conditions of optical guiding. Inspection of 
their results shows that when the carrier amplitude (a0 in 
their notation) is held fixed and the strength of optical 
guiding (described by their parameter v) is varied, one ob- 
tains a larger sideband frequency offset and a higher side- 
band growth rate. A more quantitative comparison be- 
tween their results and ours is difficult because our pa- 
rameters do not lie in their calculated range; in any case, 
they assume, for analytical tractability, that the electrons 
are deeply trapped which is not strictly valid for our 
simulations. 

Since sideband control is more important in FEL's 
with tapered wigglers, we now study the sideband growth 
in a tapered undulator with the 2D code. The simula- 
tions use the same parameters in Table I except now the 
undulator is tapered linearly in period starting at the 
middle of the undulator, with a rate of dXw/dz 
= —0.0125. With this tapering, the carrier power at the 
end of the undulator (z=70 cm) is increased by approxi- 
mately a factor of 2. Figure 5 plots the corresponding 
sideband growth rate spectrum, which shows a smaller 
sideband growth rate compared with that without taper- 
ing (Fig. 2). This result qualitatively agrees with the ex- 
periment of Yee, Marshall, and Schlesinger15 and recent 
simulations.16 

We have seen in Fig. 3 that in an untapered FEL, while 
optical guiding enhanced the sideband shift, it also in- 
creases the growth rate of sidebands. In a tapered FEL, 
another interesting result is shown in Fig. 6, which plots 
the phase shift of the radiation in cases of (a) without 
tapering and (b) with tapering. It is evident that tapering 
has a somewhat deleterious effect on refractive guiding. 
This reduction in guiding does contribute in some small 
measure to the reduction in sideband growth with taper- 
ing. 

It is well known that optical guiding effect increases 
the filling factor of the FEL optical power in the electron 
beam. A higher filling factor will generally give the sig- 
nal radiation a higher probability to scatter from the elec- 
trons executing synchrotron oscillations and therefore 
the sidebands can grow faster. This is one reason why re- 
fractive optical guiding enhances the sideband growth 
rate. We remark here that the effect of optical guiding on 
the electron distribution is usually not considered in ana- 
lytic treatments. It is easy to see, however, that while 
such treatments will correctly predict the enhanced side- 
band shifts due to guiding, they will not, in general, ac- 
count for the differences in the growth rates of sidebands 
as the strength of the guiding varies. Thus, a straightfor- 
ward extension of the analytical results due to Riyo- 
poulos and Tang17 in the presence of optical guiding (not 
included in Ref. 17) may suggest that the only required 
change in the theory is to reformulate their parameter 8S, 
which is defined as 

8s = (cor-cos)-(kr-ks)v,, (26) 

(In our notation, the subscript r denotes the sideband and 
s the signal carrier.)   Then, instead of bs = (cor — cos)( 1 
— U||/c) obtained in Ref.  17, one gets 5s = (cor — cos)( 1 
— v^/Vg). It may appear then that all that optical guid- 
ing does is to alter the shift A« by a multiplicative factor 
of (1—U||/c)/(l—U||/ug), as predicted by Eq. (1), but 
that the sideband growth rate would otherwise remain 
unchanged. This is clearly not consistent with the results 
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FIG. 5. Sideband growth rate spectrum at saturation from 
2D simulations. The undulator is tapered with dkw/dz 
= —0.0125, starting from z = 35 cm. 

FIG. 6. The radiation phase shifts with (a) a constant-period 
undulator and ib) a tapered undulator. Data are taken on the 
axis of the system. 
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FIG. 7. Electron distributions in phase space from 2D simu- 
lations in the presence of optical guiding (a), and with optical 
guiding "switched off" (b). Data are taken at the beginning of 
saturation. 

of our simulations. Hence optical guiding must affect the 
electron equilibrium distribution. To see this effect, we 
plot in Fig. 7 the electron distributions at the beginning 
of the saturated regime for (a) with optical guiding and 
(b) without optical guiding. The electron distributions 
shown are very different for the two cases. The effect of 
optical guiding on the electron distributions can be un- 
derstood by examining the unperturbed Hamiltonian 

Hn 
K 
Yr dz 

■(5y)2 + ^-8r 
ksawas 

(^sin^^+cos*) 

(27) 

where d<f>/dz describes refractive optical guiding and Vr 

describes the tapering. We see that both optical guiding 
and tapering alter the zeroth-order Hamiltonian. 

It is interesting to note, however, that the zeroth-order 
Hamiltonian and FEL filling factor depend only on 
60/9z which determines the effective index of refraction, 
and not on the group velocity of the radiation. This sug- 
gests that if we can keep the group velocity small while 
reducing the effective index of refraction of the electron 
beam, we will be able to reduce the sideband growth rate 
and still keep the sidebands away from the carrier. Since 
the linear index of refraction in the vicinity of the max- 
imum gain point is nearly a linear function of the detun- 
ing parameter, we can actually reduce the effective index 
of refraction by choosing the appropriate detuning pa- 
rameter while keeping the radiation group velocity, 
which depends only on the slope of the Re(n)-co curve, 
unchanged.18 To demonstrate this effect, we perform 
another simulation in which the signal wave number is 
slightly tuned from 35.3 to 34.5 cm-1. By doing this, the 
saturated signal power is almost unchanged and the aver- 
aged value of d<f> /dz is slightly reduced. The resulting 
sideband growth rate spectrum plotted in Fig. 8 shows 

-10 -5 0 5 
Ak/ks (%) 

10 15 

FIG. 8. Sideband growth rate spectrum in the saturated re- 
gime from 2D simulations with a constant-period undulator. 
The frequency of the carrier fc, = 34.5 cm-1 is tuned slightly 
away from the point of maximum linear gain. 

that the sideband frequency shift is almost the same as 
that in Fig. 3, but the maximum sideband growth rate is 
substantially reduced. 

IV. EXPERIMENT 

Experimental studies of the effect of optical guiding on 
sideband instabilities are done in the Columbia Universi- 
ty Raman FEL facility.19 As explained earlier, the 
artificial computational method used to switch off optical 
guiding described in the simulations is impossible to im- 
plement in the experiment. However, the optical guiding 
effect is weakened if the undulator pump field is reduced. 
The computer simulations in the last section show that 
when the pump amplitude is reduced from aw—0.3 to 
aw=0.2, the optical guiding effect will weaken consider- 
ably. Hence, by comparing experiments performed with 
these two pump amplitudes, we should be able to deter- 
mine the effect of optical guiding on sideband growth. 
While doing this, however, precaution must be taken to 
ensure that measurements of the sidebands are performed 
at the same synchrotron frequency. Since an FEL with a 
different pump field will saturate at a different power lev- 
el, and the synchrotron frequencies will therefore be 
different, our measurements are made in the nearly sa- 
turated linear regime where the signal power is still grow- 
ing axially. A movable field deflector is used to deflect 
the electron beam to the metal drift tube at a location 
where the quantity [awas/{l+a*)]l/2 remains approxi- 
mately the same when aw is changed. Data are accumu- 
lated on a shot-to-shot basis, and is then averaged after 
discarding shots for which the accelerator performance is 
not within tolerance. Refractive optical guiding is ob- 
served experimentally for aw=0.3, but when aw is re- 
duced to 0.2, the guiding effect cannot be detected within 
the limits of experimental error.14 

Figure 9 shows the schematic setup of the FEL ap- 
paratus. An intense electron beam is generated with a 
800-kV Marx generator and travels down a drift tube 
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FIG 9. The FEL oscillator. The electron beam length is 
vaned by moving the iron field deflector. The quartz mirror is 
an etalon. 
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FIG. 10. Measured FEL spectra for an oscillator 
configuration in cases of (a) with a higher pump field and good 
optical guiding, (b) reduced pump field and poor optical guid- 
ing, and (c) same parameters as case (a) but the signal runs into 
saturation where optical guiding is weak. 

which serves also as a waveguide for the radiation. The 
*EL is configured as an oscillator, which starts from 
noise, and has as an output mirror a quartz etalon. This 
etalon has a widely spaced distribution of resonant longi- 
tudinal modes.19 Only one such longitudinal mode falls 
witnm the unstable gain spectrum of the FEL, and the 
coherence of the radiation is thereby improved A 
solenoid provides an axial magnetic guiding field of about 
I 1 tor the electron beam. A correction of the effective 
pump field due to this guiding field is made according to 
tne relation 

(aJefr=7 
awykwßc 

K-rKßd (28) 

where Q,Q-eBQ/mc. The output signal is guided into a 
calibrated spectrometer (resolving power of about 100) 
consisting of a metal grating and a moveable detector for 
spectral analysis. The signal amplitude in the spectrome- 
ter can be recorded as the oscillator achieves strong out- 
put on the first radiation pass, avoiding saturation which 
occurs on subsequent passes. 

The measured spectra are plotted in Fig. 10.   An in- 
crease by a factor of 1.8 is observed in the sideband fre- 
quency offset in the larger pump-field case [Fig. 10(a)] 
than that in the lower pump-field case [Fig. 10(b)].  This 
result agrees with our simulations given in Sec. III.  It is 
worth noting that the conditions for [Fig. 10(a)] are also 
those for^a previously reported demonstration of optical 
guiding.     Thus, the present studies provide additional 
evidence for guiding using spectroscopy as a nonperturb- 
ing diagnostic.  The sideband growth rates in Fig. 10(a) 
and 10(b) are not compared because the two spectra are 
measured at different carrier amplitudes.  Figure 10(c) is 
a spectrum measured well into the saturation regime with 
aw-0.3.   In this case, the sidebands have moved back 
closer to the carrier compared with that in Fig. 10(a) 
This result, which is due to the fact that the optical guid- 
ing effect is weaker in the saturation regime than in the 
linear regime, is in qualitative agreement with the numer- 
ical results discussed in Sec. III. In fact, experimentally, 
it has not been possible to demonstrate conclusively the 
existence of optical guiding at saturation using the tech- 
niques described in Ref. 14. 

The results above are obtained using a constant-period 
undulator. It is found that sideband power is appreciably 
reduced using a tapered undulator; for detail, the reader 
is referred to Ref. 15. 

V. CONCLUSION 

We have studied numerically and experimentally the 
effects of refractive guiding and wiggler tapering on the 
sideband instabilities. The results indicate that refractive 
optical guiding can shift the sideband frequencies away 
from the carrier. With the Columbia University FEL, a 
shift by a factor of about 2 in the sideband frequency 
offset is observed due to the presence of refractive optical 
guiding. Our numerical simulations also predict that in 
addition to the sideband frequency shift, optical guiding 
also enhances the sideband growth rate when the condi- 
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tion vn^vg is not satisfied. We believe that this increase 
in the sideband growth is mainly due to two reasons. 
First, optical guiding increases the filling factor of the 
beam, which in turn enhances the photon scattering from 
the oscillating electrons and produces more photons at 
the sideband frequencies. Second, the presence of optical 
guiding has a strong effect on the electron distribution in 
the ponderomotive potential wells. As predicted by ana- 
lytic calculations,2'17 the sideband growth is very sensi- 
tive to the details of the electron distribution functions. 
By tuning the "detuning parameter" slightly away from 
the maximum gain  point,  we,  however,  are able  to 

demonstrate numerically a reduction in the sideband 
growth rate while simultaneously maintaining sideband 
separation from the carrier. Our results also show that 
undulator tapering which increases the FEL efficiency 
can, under certain conditions, reduce the sideband 
growth as well. 
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SIDEBAND INSTABILITIES AND OPTICAL GUIDING IN A FREE ELECTRON LASER: 
EXPERIMENT AND THEORY 

A. BHATTACHARJEE, S.Y. CAI, S.P. CHANG, J.W. DODD and T.C. MARSHALL 
Department of Applied Physics, Columbia University, New York, New York 10027, USA 

Experimental and theoretical studies of the effects of tapering and optical guiding on sideband instabilities are reported. The 
experiments are performed in the Columbia Raman FEL ( = 2 mm). Experiment shows sizeable reductions in sideband amplitudes in 
an efficiency-enhanced undulator. In the presence of optical guiding in a constant-period undulator, the sideband shift is larger 
compared with the case when optical guiding does not occur. 

The sideband instability [1] in a free electron laser, 
driven by the synchrotron motion of the electrons 
trapped in the pondermotive potential well, has been 
regarded as a hazard to FEL efficiency-enhancement 
schemes such as the variable parameter undulator [2], 
The hazard is that uncontrolled growth of the sideband 
may detrap electrons from the ponderomotive bucket 
and undermine the efficiency of energy extraction. 
Strong sidebands have indeed been observed in experi- 
ments [3-5]. 

One of the purposes of the present paper is to 
describe recent experimental results from the Columbia 
FEL (= 2 mm) with a tapered undulator which shows 
that the sideband amplitude is much lower than with a 
comparable constant-parameter undulator [6], Both ex- 
periment and numerical simulation indicate that this 
reduction in sideband amplitude can be accomplished 
without compromising the standard prescription for 
efficiency enhancement. 

Another purpose of this paper is to report pre- 
liminary experimental and theoretical results of the 
effects of optical guiding on sidebands. The concept of 
optical guiding has been validated in several experi- 
ments [7-10]. Since optical guiding occurs due to mod- 
ifications in the refractive index of the electron beam 
which in turn determines the group velocity of the 
radiation, it is natural to expect that optical guiding 
should control the slippage between the electron and 
optical pulses, and hence, the sideband shift. 

We begin with a discussion of sideband instabilities 
in a tapered wiggler. The operating parameters of the 
Columbia Raman FEL are given in table 1, and the 
experimental configuration is shown in fig. 1. The ex- 
periment demonstrated enhancement in efficiency from 
4% ("untapered") to 12% ("tapered") - details are 
given in ref. [6], In fig. 2 we compare the spectra of the 
radiated power for the untapered and tapered undula- 
tors. Fig. 2a is the spectrum showing the carrier (2.5 

0168-9002/89/S03.50 5 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

mm) and the long-wavelength sideband (2.6 mm) in an 
untapered undulator. Fig. 2b shows the corresponding 
spectrum for a tapered undulator - the sideband ampli- 
tude is down by 50*? compared with that in the con- 
stant-period undulator. Fig. 3 shows the power growth 
along the tapered section of the undulator (/w — 1.45 cm 
for z < 40 cm). A 1-D simulation predicts an increase of 
power by approximately a factor of two [11]. The ob- 
servations indicate that the enhancement in the ef- 
ficiency of a tapered undulator is approximately in 
accordance with the prediction of 1-D. single-mode 
theory. Furthermore, tapering has the salutary effect of 
reducing the sideband amplitude. In these experiments, 
optical guiding does not occur. Numerical simulations 
of the Columbia FEL using a 2-D code with waveguide 
boundary conditions reproduce qualitative features of 
the sideband behavior [6]. (Similar numerical results for 
a short wavelength FEL have also been reported re- 
cently by Hafizi et al. [12].) 

Table 1 
FEL experimental parameters 

Accelerator voltage 

Electron beam current density- 
Electron beam radius 
Waveguide (drift tube) radius 

Undulator period 

Normalized vector potential 
of undulator field yr_ /c 

FEL carrier wavelength 

FEL power 
Resonator length 

800 kV (figs. 5-7) 
700 kV (figs. 2 and 3) 
1 kA/cm" 
2 mm 
9 mm (figs. 5-7) 
3 mm (figs. 2 and 3) 
1.7 cm (figs. 5-7) 
1.45 cm (figs. 2 and 3) 

aw - 0.3 
1.8-2.0 mm (figs. 5-7) 
2.5 mm (figs. 2 and 3) 
100 kW to MWs 
= 1 m 
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Fig. 2. Spectrum showing carrier (2.5 mm) and long-wave- 
length sideband (2.6 mm) emitted from an FEL in an un- 
tapered undulator (a) and a tapered undulator (b). The side- 
band amplitude in (b) is smaller by 50% compared with (a) [6]. 
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Fig. 3. Power growth along the tapered portion of the undula- 
tor. 

We now describe the effect of optical guiding on 
sidebands. The equations of motion of the electrons are 

d^ _     ksa„as 

dr sin \pj 

2ul 
+ "^7[<cos ^sin *J ~ <sin ^>cos +A -  (J) 

cty. 
■ =k„ + k-kc 

/1/l-(l+^-2flwafcos^)/Y/+|?, 

(2) 

where yywc2 is the energy of the y th electron of rest 
mass m, \pj is the phase of the j th electron with respect 
to the signal of frequency cos = ksc and wave number 
*s< ^w = 2Tr//w is the wave number of the wiggler. aw 

and as are respectively the normalized vector potentials 
of the helical wiggler and signal, co"- = 4irne2/m is the 
plasma frequency of the electron beam, and <p is the 
phase shift of the radiation field. The second term on 
the right-hand-side of eq. (1) describes the effect of 
space charge. 

The 1-D wave equation for the radiation amplitude, 
assuming it is slowly varying, is 

_8_ 
dz c dt 

+ -^\u(z.t) 
Pflw/exp[-i(^-j>)] 

kS 
(3) 

where u = as exp(i<£). The calculation can be simplified 

V. NON-LINEAR REGIME THEORY 
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by integrating along the characteristics of eq. (3), which 
motivates the following variable transformations [13]: 

c 

y = 

Lv(c/v-\) 
c 

Lw(c/o-l) 

(t-z/c), 

{z/v-t). 
(4) 

Here Lw is the length of the wiggler. Then eqs. (l)-(3) 
transform to 

3Y> Lwk5a,av 

dx 

1L u- 

<oec 

sin f, 

[(cos <|>) sin ipj — (sin \p) cos \pj], 

(5) 

dx 

du 
3v 

LM.    /CU,       K K       /CC 

/v 1 -(lra;- 2awas cos ^)/y/ ) + 
94> 
dx' 

iZ.ww*av 

*tc
2 

exp(-i(>-<*>)) 

f 

(6) 

(7) 

We impose a periodic boundary condition in time. 
The period is taken to be T = 2ir/A<o, where Aw = cor — 
<os and ur is the sideband frequency. Eqs. (5)-(7) are 
then solved in the cross-hatched domain indicated in 
fig- 4. 

Refractive optical guiding, which occurs because the 
refractive index n obeys the condition Re(/j) > 1, is of 
primary interest in this paper. Refractive guiding can be 
artificially reduced to zero in free space by replacing 
(exp( — iilO/y) with — i(sin l/'/y). In what follows, we 
compare the results of the 1-D simulation with and 
without optical guiding, and study the effects of space 
charge. The numerical results are compared with the 
well-known formula [5], 

A<d  _  1 ~~ v\\/c -Ysynch 
cos       1 - Ug/c     N 

where  u„  is the group velocity of the radiation and 

(8) 

z =o 

Fig. 4. Domain of integration in x and y for eqs. (5)-(7) 
indicated by the cross-hatched region. 
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Fig. 5. Numerical simulation of sidebands with (solid lines) 
and without optical guiding (dotted lines). 

^synch ^s tne number of periods of the synchrotron 
oscillations within an undulator which has N periods. 

The experiment is done in a highly overmoded wave- 
guide, where optical guiding is set up by the nonlinear 
coupling of higher order propagating waveguide modes 
via the FEL interaction [10]. Before we present experi- 
mental results, we discuss results from numerical simu- 
lations. In fig. 5 we compare the sideband shift for the 
parameters listed in table 1 (appropriate to the larger 
drift tube) with and without optical guiding, and zero 
space charge. The effect of guiding clearly enhances the 
sideband shift, but also increases the sideband ampli- 
tude. It is interesting to note that in this case the lower 
and upper sidebands are exactly symmetric about the 
carrier when guiding is turned off. 

A preliminary calculation by Johnston et al. [15] in 
the linear regime predicts v^/c — 0.936 for the parame- 
ters of fig. 5. Our numerical results without space 
charge in this regime is v&/c = 0.943, which is in rea- 
sonable agreement with his theory. If the effect of space 
charge is included, we obtain ug/c = 0.959 in the linear 
regime. In the saturation regime, we get v^/c = 0.955 
without space charge, and ug/c = 0.961 with space 
charge. Formula (8) then clearly indicates that the 
sideband shift enhancement due to guiding is generally 
degraded by the effects of space charge and at satura- 
tion. 

We now present sideband spectroscopy studies of 
the Columbia Raman FEL. The spectrum is obtained 
by a grating spectrometer with a resolving power — 100. 
Data is accumulated on a shot-by-shot basis, and then 
is averaged after discarding shots when the accelerator 
performance is not within tolerance. The FEL is con- 
figured as an oscillator, the output mirror generally 
being a quartz etalon. This etalon has a widely-spaced 
distribution of longitudinal modes, unlike the FEL reso- 
nator where the cavity modes are closely spaced. The 
etalon mirror therefore favors oscillation on just one 
longitudinal mode of the combined system, and this 
results in improved coherence. The idea is to choose the 
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Fig. 6. FEL spectra for an oscillator configuration using a 
single-mesh mirror reflector (b) and a two-mesh etalon (a). The 

long-wavelength sideband is at 2.25 mm. 

etalon spacing so that just one longitudinal mode of the 
etalon falls within the unstable gain-spectrum of the 
FEL. 

A demonstration of the narrowing of the FEL "car- 
rier" is shown in fig. 6. In fig. 6b, the output mirror is a 
simple wire mesh, whereas in fig. 6a the output mirror is 
an etalon made up of two wire meshes separated by 15 
mm spacing. The spectral width of the carrier in fig. 6a 
is ~ 1.5%, whereas in fig. 6b the carrier is much wider - 
at least 3% or more. A complicating feature is the 
sideband; the long wavelength sideband in fig. 6 is 
prominent. We will return to this shortly. In addition to 
the linewidth narrowing, the etalon can also "pull" the 
carrier wavelength of the FEL if the etalon spacing is 
appreciably changed. We have been able to change the 
carrier wavelength by - 5% using this technique. 

In the sideband studies which follow, not only the 
magnetic field of the undulator, but also the length of 
the electron beam in the undulator can be changed. This 
can be done by using a movable piece of iron inside the 
guiding-field solenoid; the electron beam is deflected to 
the wall of the drift tube by the iron. The FEL will 
oscillate over a wide range of electron beam-length, the 
"start-time" of the oscillator increasing as the beam 
length is shortened. It is quite possible to operate the 
system so that, starting from noise, at a high value of 
undulator field the signal saturates before reaching the 

end of the undulator. The sideband can be observed 
either when the FEL signal reaches a saturated condi- 
tion (which is where one might naturally expect to find 
it), or relatively "late" in the regime of exponential 
growth. This occurs in this experiment because the 
growth rate of the-sideband is comparable to the carrier. 
When we report data on the sideband in the linear 
regime of growth, we have shortened the beam length so 
that saturation does not occur on a single pass, and we 
observe the signal strength on the first pass of the 
radiation along the system. The experimental studies 
use the FEL as an oscillator with a quartz etalon mirror, 
and couple the output power into the spectrometer 
where both the carrier and sidebands are observed. (In 
previous optical guiding studies [10], a broadband filter 
was used so that the guiding signal data included carrier 
and sidebands.) 

Three sideband spectra are shown in fig. 7. In figs. 
7a and 7b we show spectra obtained near the end of the 
exponential growth phase, comparing a case where the 
undulator field is large and optical guiding is occurring 
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Fig. 7. Effect of optical guiding on the sideband wavelength. 
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(this is the example of ref. [10]) with a case where the 
undulator field is weaker and optical guiding is margi- 
nal according to the theory and not found experimen- 
tally. Because the sideband shift depends on the syn- 
chrotron period, which itself depends on the product 
(flsaw)1/2. we have allowed the signal in case (b) to 
grow to a larger amplitude than in case (a) so that we 
are comparing examples with nearly the same synchro- 
tron period. This is done by reducing the length of the 
electron beam in the undulator for the case with larger 
pump field. An experimental estimate of the synchro- 
tron period is in the range - 20 cm (this is obtained 
from a study of power variation along the electron 
beam following the point of saturation). The sideband 
shift from the carrier in fig 7b is seen to be consistent 
with this measurement; that is. Nsyn/N ~ 10%. 

By comparing the two examples in figs. 7a and 7b, 
we find the optical guiding has resulted in an increase 
of the sideband displacement from the FEL carrier. We 
attribute this increase to the refractive effect of optical 
guiding upon the wave group velocity, as given by eq. 
(8). The experiment operates under conditions of refrac- 
tive guiding dominating gain guiding. In fig. 7c, we 
show what happens to the spectrum of fig. 7a if the 
signal is allowed to grow well into the saturation re- 
gime. Then the sidebands have a tendency to shift closer 
to the carrier: the short wavelength sideband returns to 
the same location as fig. 7b, while the long wavelength 
sideband is shifted somewhere between the location of 
fig. 7a and fig. 7b. Again, the synchrotron period is 
nearly unchanged. The conclusion from fig. 7c is that as 
the signal goes into saturation, the additional sideband 
shift due to guiding is diminished. The results are in 
qualitative agreement with the numerical results dis- 
cussed earlier. 
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Note added in proof: More details on the effects of 
optical guiding on sideband instabilities have been given 
in a recent article [16]. 

References 

[1] N.M. Kroll and M.N. Rosenbluth, in: Physics and Quan- 
tum Electronics (Addison-Wesley,  Reading, MA,  1980) 
vol. 7, p. 147. 

[2] N.M. Kroll. P.L. Morton and M.N. Rosenbluth, in ref. [1], 
p. 81. 

[3] R.W. Warren, B.E. Newnam and J.C. Goldstein, IEEE J. 
Quantum Electron. 21 (1985) 882. 

[4] F.G. Yee, J. Masud, T.C. Marshall and S.P. Schlesinger. 
Nucl. Instr. and Meth. A259 (1987) 104. 

[5] J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, W.M. 
Fawley. E.T. Scharlemann, S.S. Yu, A.M. Sessler and E.J. 
Sternbach, Phys. Rev. Lett. 58 (1987) 763. 

[6] F.G. Yee, T.C. Marshall and S.P. Schlesinger. IEEE Trans. 
Plasma Sei. 16 (1988) 162. 

[7] F. Hartemann, K. Xu. G. Bekefi, J.S. Wurtele and J. 
Fajans, Phys. Rev. Lett. 59 (1987) 1177. 

[8] R.W. Warren and B.D. McVey, Nucl. Instr. and Meth. 
A259 (1987) 154. 

[9] J.E. LeSala, D.A.G. Deacon and J.M.J. Madey, Phys. Rev. 
Lett. 59 (1987) 2047. 

[10] A. Bhattacharjee, S.Y. Cai, S.P. Chang, J.W. Dodd and 
T.C. Marshall, Phys. Rev. Lett. 60 (1988) 1254. 

[11] F.G. Yee and T.C. Marshall, IEEE Trans. Plasma Sei. 13 
(1985) 480. 

[12] B. Hafizi, A. Ting, P. Sprangle and CM. Tang, Phys. Rev. 
A38 (1988) 197. 

[13] M.N. Rosenbluth, H.V. Wong and B.N. Moore, private 
communication. 

[14] W.B. Colson, Proc. SPIE 453 (1984) 290. 
[15] S. Johnston. A.M. Sessler, Y.-J. Chen, W.M. Fawley and 

E.T. Scharlemann, private communication. 
[16] S.Y. Cai, A. Bhattacharjee. S.P. Chang, J.W. Dodd and 

T.C. Marshall, Phys. Rev. A40 (1989) 3127. 



II 

VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990 

Statistical Properties of Wiggler and Bending-Magnet Radiation 
from the Brookhaven Vacuum-Ultraviolet Electron Storage Ring 

Malvin C. Teich 
Columbia Radiation Laboratory, Departments of Electrical Engineering and Applied Physics, 

Columbia University, New York, New York 10027 

Toshiya Tanabe and Thomas C. Marshall 
Department of Applied Physics, Columbia University, New York, New York 10027 

John Galayda(a) 

National Synchrotron Light Source. Brookhaven National Laboratory, Upton, New York 11973 
(Received 17 September 1990) 

The photoelectron counts of spontaneous light from the wiggler in the Brookhaven electron storage 
ring obey the negative-binomial distribution, in accord with the predictions of a multielectron mul- 
timode theory. The bending-magnet light emerging from the Pyrex exit port of the storage ring'obeys 
the Neyman type-A distribution. 

PACS numbers: 42.55.Tb, 41.70.+t, 42.50.Bs 

We have carried out a series of experiments on the 
photoelectron statistics associated with the radiation 
emitted from the vacuum-ultraviolet electron storage 
ring at the National Synchrotron Light Source at 
Brookhaven National Laboratory. The statistical prop- 
erties of light emitted by electrons in a storage ring, and 
from free-electron lasers, are of interest inasmuch as 
sources such as these are being used in an increasingly 
broad range of applications. 

There have been a number of theoretical investigations 
of the photon-number statistics of the radiation emitted 
from an electron beam as it propagates through a wig- 
gler, i.e., the spontaneous emission from a free-electron 
laser. * A single electron gives rise to photons charac- 
terized by aPoisson photon-number distribution1 P(n), 
which has a variance given by 

Although Eqs. (2) and (3) are obtained using a mul- 
tielectron theory, they are not directly applicable to the 
light observed from a radiating electron beam because 
the polarization properties of the light, and the finite 
photodetector counting time, area, and quantum efficien- 
cy must be taken into account. These factors require a 
multimode, rather than a single-mode, description of 
thermal light.9 The detected photoelectrons are more 
properly described by the negative-binomial distribu- 
tion,6,8"10 which has a variance given by 

Var(/M)=(m) + <m)2/3/. (4) 

Var(«)-<«>, (1) 

where {n) is the photon-number mean. However, the ra- 
diation from an electron beam is more properly described 
by a multielectron theory. Several researchers2"5 have 
shown that in this case 

Var(«)=(/i) + (/i)2(l-l/iVe), (2) 

where (n)*°Ne{a), with Ne the (fixed) number of elec- 
trons in the bunch and (a) the mean number of photons 
spontaneously emitted by a single electron during a pass 
through the wiggler. This formula can be viewed6 as 
arising from a superposition of a fixed number Ne of 
independent, statistically identical coherent emissions, 
each of which contains a Poisson number of photons of 
mean (a). When W,»l, Eq. (2) reduces to the Bose- 
Einstein result associated with single-mode thermal 

i.e., light,6"8 

Var(/i)=<«> + <«>2. (3) 

Here (m) = r/</i>, where r/ is the optical-system quantum 
efficiency, and M is the number-of-modes (degrees-of- 
freedom) parameter, to be described subsequently. The 
description provided in Eq. (4) is, indeed, applicable for 
describing the light from many types of lasers operated 
below threshold. For r/=Af = 1, we recover the Bose- 
Einstein result of Eq. (3). 

In our experiments, a single pulse of electrons with an 
approximate duration of 480 psec at a point on the exit 
window moves around the ring once each 170.2 nsec. 
This group of electrons produces a pulse of light as it 
passes through a linear wiggler placed in the storage 
ring, and it also generates bending-magnet (synchrotron) 
radiation as it passes through each of the bending mag- 
nets in the ring. The light is always produced from the 
same group of electrons since the current decay time 
(«100 min) is much greater than the time of an experi- 
ment. The operating parameters of the wiggler and 
storage ring are provided in Table I. 

The experimental arrangement for measuring the sta- 
tistical properties of the wiggler light is schematically il- 
lustrated in Fig. 1. It makes use of an analog photo- 
electron-counting technique." The radiation from the 
electrons as they pass through the wiggler takes the form 
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TABLE I. Wiggler (BNL designation U13-TOK) 
quadrupole parameter (SQ -300 and 0 correspond to 

and storage-ring parameters used in our experiments.  SQ represents the skew 
tightly focused and loosely focused electron beams, respectively). 

Wiggler period, X0 

Number of wiggler periods, TV 
Peak wiggler magnetic field, B0 

Wiggler strength parameter, K 
(K-eBtfaJlnJlmc1) 

Operating energy 
Operating current 
Horizontal damped emittance, ex 

Vertical damped emittance, e,. 

Source size, o>, av 

10 cm 
22.5 
0.61 T 
4.0 

== 650 MeV (wiggler light); = 745 MeV (bending-magnet light) 
« 50 mA (wiggler light); « 150 mA (bending-magnet light) 
8.0* 10   8 m rad (SQ-300), 7.4x 10-8 m rad (SQ-0) (wiggler light); 

1.5x 10 ~7 m rad (bending-magnet light) 
2.0xl0_8rnrad (SQ-300), 2.6x 10"8 mrad (SQ-0) (wiggler light); 

> 2.8 x 10   l0 m rad (bending-magnet light) 
1.0 mm, 0.32 mm (SQ-300), 0.96 mm, 0.36 mm (SQ-0) (wiggler light); 
0.5 mm, > 0.06 mm (bending-magnet light) 

of brief pulses of light with a center wavelength of 532 
nm (at the fundamental) and a full width at half max- 
imum (FWHM) of =20 nm. These light pulses pass 
through the Pyrex exit port of the ring and are directed 
through an optical interference filter with a center wave- 
length of 532 nm and a FWHM of 3.2 nm. The operat- 
ing energy of the ring was adjusted so that the funda- 
mental wavelength of the wiggler light would precisely 
match the maximum-transmission wavelength of the in- 
terference filter. The light was focused by a 50-mm- 
focal-length glass lens onto a Si p-i-n photodiode detec- 
tor with a quantum efficiency of 0.78. 

The photodiode output is passed through a pair of cas- 
caded video amplifiers, each with an input impedance of 
50 «, a voltage gain of 10, and a bandwidth of 500 
MHz. These amplify the pulses by a factor of 100 and 
broaden their width from 480 psec to 5 nsec (see Fig. 1). 
The pulses are then fed into a gated-integrator-boxcar- 
averager module. This device high-pass filters the pulses 
to eliminate noise below 10 kHz, and provides an elec- 
tronic gate with a 15-nsec width. It provides an output 
for every thousandth pulse, as selected by a cascade of 
three divide-by-ten counters which are triggered by the 

FILTER 
LENS 

LIGHT p-i-n 
PHOTO- 
DIODE 

AMPLI- 
FIER w 

PULSE 
SELECTION 
(X 0.001) 
& SATED 
INTE- 
GRATOR 

MULTI- 
CHANNEL 

ANALYZER 

1 
480 ps 

I t   zz 

.5 ns _ 10 (is 

n n 
170 ns 170 ns 170 us 

FIG. 1. Block diagram of the experimental arrangement 
used for the analog measurement of the photoelectron-counting 
distribution of wiggler light. The apparatus is operated in a 
slightly different configuration for obtaining the distribution of 
bending-magnet light (see text). 

ring clock. The time between the selected pulses of light 
is therefore 170 //sec, which is sufficiently slow for the 
electronics to register them. The selected pulses are then 
integrated and amplified (in this same processor) to pro- 
duce a sequence of voltages, following each pulse, that is 
proportional to its integrated current, i.e., to its charge. 
A 10-//sec-width sample of each of these voltages is ob- 
tained by using a digital-delay-pulse generator synchro- 
nized to the pulses, in conjunction with an integrated- 
circuit switch. This sequence of voltage samples, after 
suitable normalization, represents the numbers of photo- 
electrons per pulse. They are fed to a multichannel 
analyzer (2048 bins) which sorts them into a histogram 
that represents the photoelectron-counting distribution 
Pirn). The typical time to collect a distribution is « 5 
sec, during which a total of «30000 samples are col- 
lected (in some experiments only 15000 samples were 
registered). 

The system noise was determined by feeding a se- 
quence of identical deterministic electrical pulses (in 
place of the photodiode output) into the amplifier and 
then measuring the variance at the output of the mul- 
tichannel analyzer as a function of the pulse level. The 
resultant noise-count variance was found to be approxi- 
mately constant at = 3xl08 for count means above 
5xl06; however, it decreased with decreasing count 
mean below this value. 

The experimental photoelectron-counting distribution 
Pirn) is shown in Fig. 2(a) for the wiggler light. The 
mean photoelectron number for this particular distribu- 
tion was adjusted to be = 9.8xl06 by means of the 
neutral-density filter placed in front of the lens. The ex- 
perimental distribution is nicely fitted by a negative- 
binomial theoretical distribution convolved with a zero- 
mean Gaussian distribution (with variance of 3xi08) 
representing the system noise. The experimentally deter- 
mined number of modes is M ~ 54000. 

In another set of experiments, the wiggler was effec- 
tively removed (by increasing the gap between the mag- 
nets) and the photoelectron-counting distribution of the 
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FIG. 2. (a) Squares represent the photoelectron-counting 
distribution P(m) vs the photoelectron number m for wiggler 
light from a tightly focused electron beam. The data are weil 
fitted by a negative-binomial distribution convolved with a 
Gaussian representing the system noise (solid curve), (b) Tri- 
angles represent P(m) vs m for bending-magnet light. The 
data are well fitted by the Neyman type-A distribution con- 
volved with the same Gaussian (solid curve). 

bending-magnet light emerging from the Pyrex exit port 
of the storage ring was measured. The experimental ar- 
rangement is similar to that shown in Fig. 1 with the fol- 
lowing exceptions (see Table I): The interference filter 
was removed to increase the photon flux entering the sys- 
tem; the operating energy of the ring was set at the nor- 
mal value since it was not necessary to adjust the center 
wavelength of the light to the interference-filter max- 
imum; the operating current was increased since the 
heating limitations imposed by the wiggler were not 
present; and the electron-beam emittance and source 
sizes were somewhat different. 

The bending-magnet light in the ring is broadband 
with photon, energies that stretch into the x-ray region. 
As a consequence of the short coherence time of this 
light, we would expect that the detected photons, if they 
were able to be measured directly, would obey the neg- 
ative-binomial distribution with a value of M sufficiently 
large that the Poisson distribution would provide a good 
approximation. 

The experimental photoelectron-counting distribution 
for the bending-magnet light is shown in Fig. 2(b). The 
mean photoelectron number was adjusted to be 
= 9.8xio6, the same as for the wiggler light shown in 
Fig. 2(a). The distribution associated with this light 
does not obey the Poisson distribution. Instead, it turns 
out to be well fitted by a Neyman type-A (NTA) distri- 
bution12"14 convolved with the same zero-mean Gaussian 
noise distribution used for Fig. 2(a). The NTA distribu- 
tion, which has a variance given by61014 

Var(m)-(l+i7<o»<ffi>, (5) 

provides a good approximation for describing the sta- 
tistics of luminescence light with an arbitrary spec- 
trum. I3J4   Here {m)=*ri{n), where 77 is the optical-sys- 

PII0T0ELECTR0N COUNT MEAN <m> 

FIG. 3. Photoelectron-count variance vs count mean for 
wiggler light from a tightly focused electron beam (squares), a 
loosely focused electron beam (dots), and for bending-magnet 
light (triangles). The noise variance has been subtracted from 
the data as plotted. The count variance increases with the 
square of the mean for wiggler light, and directly in proportion 
to the mean for bending-magnet light. The solid square and 
triangle are the data points corresponding to the full counting 
distributions presented in Figs. 2(a) and 2(b), respectively. 

tern quantum efficiency, and, in the context of lumines- 
cence, in) is the secondary photon-number mean and (a) 
is the mean number of secondary photons per primary 
Poisson event.12 It is determined from the data in Fig. 2 
that 77(a) = 45. 

We have experimentally verified that the wiggler light 
and   bending-magnet   light   obey   different   functional 
forms for the variance, as given in Eqs. (4) and (5), re- 
spectively.  The results are illustrated in Fig. 3 for wig- 
gler light with a tightly focused electron beam (squares), 
a loosely focused electron beam (dots), and for bending- 
magnet light (triangles).   The maximum photoelectron 
count mean (== 107) was governed by the storage-ring 
current specified in Table I.   Lower count means im) 
were obtained by the use of the variable neutral-density 
filter in front of the lens and, to a lesser degree, by the 
loss of electrons during the duration of an experimental 
run.   It is clear from Fig. 3 that the variance of the 
wiggler light does indeed vary as im)2, as expected from 
Eq.   (4)   since    im)»M,   and   the   variance   of  the 
bending-magnet light varies as im) in accordance with 
Eq. (5). 

Using Eq. (4), the number of modes M was deter- 
mined from the experimental wiggler-Iight curves in Fig. 
3 to be «54000 and 78000 for the tightly focused and 
loosely focused electron beams, respectively. It is diffi- 
cult to precisely estimate the expected number of modes 
M without knowing the spatiotemporal correlation prop- 
erties of the light. Nevertheless, M was estimated to be 
a product of three factors, associated with time, area, 
and polarization. We assumed that M~MTMAMP 

~(T/rc)(A/Ae)[2/(l+P)], with T the counting time, 
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rf the coherence time of the light, A the photodiode ac- 
tive area, Ac the coherence area of the light, and P the 
degree of polarization. This expression is appropriate for 
cross spectrally pure light8 when the first two factors are 
substantially  greater  than   unity.    These  factors  are 
roughly estimated to be MT ~ 2450, using zc« 0.2 psec 
as determined by the Gaussian passband of the interfer- 
ence filter; MA~212 and  «30.5, for the tightly fo- 
cused and loosely focused beams, respectively (assuming 
that MA, which depends on the emittance, can be reason- 
ably represented as the calculated ratio of the total pho- 
ton flux to the coherent photon fluxl5); and the measured 
degree of polarization /»=0.87.   The theoretically ex- 
pected   results   for   M  are   therefore   «71000   and 
= 80000 for the tightly focused and loosely focused 
electron beams, respectively, which are not in unreason- 
able agreement with the measured values given the large 
uncertainties involved.   In other series of experiments, 
conducted using either longer pulse widths, unfocused 
wiggler light, or rectangular slits (in the horizontal or 
vertical direction), we obtained values of M that varied 
in the expected manner. 

Using Eq. (5), it was determined that 77(a) «40 for 
the collection of triangular data points in Fig. 3 [the 
specific data point used for Fig. 2(b) had a value 77(a) 
«45].   One possible reason that the bending-magnet 
light emerging from the Pyrex exit port of the storage 
ring might obey the NTA distribution is as follows.  A 
high-energy photon, when striking an optical material, 
can give rise to many visible photons through photo- 
luminescence, as occurs in a scintillation crystal.13 If the 
photon-number statistics of a pulse of synchrotron light 
inside the ring were Poisson, as expected, and the num- 
ber of visible luminescence photons a created per ener- 
getic synchrotron photon were also Poisson, the resulting 
photoelectron  statistics  would  be  describable by  the 
NTA distribution.13 The light emitted by a mechanism 
such as this would be diffuse, in accord with our observa- 
tions.   The photoluminescence explanation fails in one 
respect, however. From Eq. (5) it is seen that the quan- 
tum efficiency 77 multiplies the mean number of secon- 
dary photons per primary event (a).   The slope of the 
curve fitting the triangles in Fig. 3 should therefore vary 
as different neutral-density filters change the value of 77, 
which it does not appear to do. The explanation of why 
the NTA distribution fits the bending-magnet light so 
well therefore requires further investigation. 

With respect to the spontaneous wiggler light, we con- 

clude that the applicability of the multimode thermal 
model is supported by the fit of the negative-binomial 
theoretical photoelectron-counting distribution to the 
data, by the observed quadratic dependence of the count 
variance on the count mean, and by the reasonable 
agreement of the theoretical estimates of the number of 
modes M with our observations. It is, perhaps, worthy of 
mention that the dependence of the variance on the mean 
was also quadratic for third-harmonic wiggler light at 
532 nm, obtained by operating the ring at « 375 MeV. 
It will be useful to conduct further studies to verify that 
other measures of the photoelectron point process6'8 are 
consistent with the multimode thermal model for wiggler 
light. 
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This study is motivated by the analytical solutions of superradiance in a high-gain free-electron 
laser obtained by Bonifacio, Maroli, and Piovella, using the technique of Laplace transforms [Opt. 
Commun. 68, 369 (1988)]. An error in these analytical solutions is remedied by a correct treatment 
of the boundary conditions on the electron beam, and the earlier theory is extended to allow for 
both electron shot noise and an optical pulse in the initial state. It is shown that, when the optical 
pulse is shorter than the electron pulse, superradiant behavior can also occur at the leading edge of 
the optical pulse. 

I. INTRODUCTION 

In a free-electron laser (FED, a relativistic electron 
beam passes through the transverse periodic magnetic 
field of an undulator (or wiggler), transferring energy to a 
copropagating electromagnetic wave. For the device to 
generate coherent radiation, it is necessary to satisfy a 
resonance condition which requires the electrons to slip 
one wavelength behind the radiation as the electrons pass 
over one undulator period. When this resonance condi- 
tion is satisfied, the electron beam, after traveling a dis- 
tance z, lags behind the optical beam by a slippage dis- 
tance given by 

(kjk,„)z (1) 

where ks and ku, are, respectively, the wavelength of the 
radiation and the undulator. A standard approximation, 
frequently made in theoretical analyses, is to take the 
slippage distance 5 to be much smaller than the input 
electron pulse length LB (or optical pulse length L). In 
this "long-pulse" approximation, one can follow electrons 
within one period of the ponderomotive potential well 
and assume that electrons in adjacent wells satisfy a 
periodic boundary condition. This approximation is 
clearly violated if S>LB; even if S <LB, the periodic- 
boundary condition does not hold at the edge of the elec- 
tron pulse. 

Recently, Bonifacio, Maroli, and Piovella1 have 
presented some interesting analytical solutions in the 
linear regime taking into account the effect of slippage. 
Two distinct regimes are identified in Ref. 1. In one re- 
gime, referred to hereafter as the steady-state regime, the 
effect of slippage can be neglected, and the intensity 
scales as «cf

/3, where nL. is the electron density. In the 
other regime, the effect of slippage is crucial, and the 
peak intensity scales as n~. This latter regime is shown to 
be significant when the slippage distance 5 is comparable 
with or larger than the electron pulse length. By analogy 
with laser physics," Bonifacio and Casagrande have 
termed this regime the "superradiant" regime,1"' though 
it has been noted in Ref. 4 that perhaps the term 
"superfluorescence"   is   more   appropriate.    The   oc- 

currence of superradiance has been confirmed by recent 
numerical simulations.45 

Analytical solutions describing superradiant behavior 
have been obtained in Ref. 1 by using Laplace trans- 
forms. Particular solutions have been given for the start- 
up of a high-gain FEL from initial conditions of zero op- 
tical field and electron shot noise. While these solutions 
predict correctly the existence of the superradiant regime 
for S<LB, we show that the analysis given in Ref. 1 is 
not quite correct for S > LB, which is precisely when 
superradiance is expected to be a dominant effect. In par- 
ticular, we show that the evolution of the radiation field 
is qualitatively distinct in the two cases S=LB and 
S>LB, a distinction that has not been made in the 
analytical treatment of Ref. 1. Thereafter, we give gen- 
eral solutions for the evolution of the radiation field in 
the presence of a finite optical pulse of length L at input. 
A new result that follows is the occurrence of superradi- 
ance at the leading edge of the optical pulse when 
L <LB. (A preliminary account of these results was 
presented recently.6) 

II. DYNAMICAL EQUATIONS 

We begin our analysis with the one-dimensional FEL 
equations 

dz 

dib, 

7.« 

k.QM,, 
-sind/' +&) 

i ] 

dz 
■=k„ XL + k^aKau.cosiibj +6) 

7] 
(2b) 

and 

dz 
11. 
c dt 

ia„.oi- 

1k rl 

exp( —iib) 

7 

where z is the direction of propagation of the electron 
and optical beams and also coincides with the undulator 
axis; ibj+<b is the relative phase of the electron (of rest 
mass m) with respect to the radiation field, and i/yrcc2 is 
its energy; A= A„. 4-A<, au.=:eAw/mc1, as=eAs/mcl; 
ku.,kK —io/c are the wave numbers of the undulator and 
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radiation fields, respectively; co is the radiation frequency; 
u = atexp(/<6) is the complex amplitude of the radiation 
field; and yr is the resonant electron energy factor, 
defined by the relation 

Y~r = 
2*„ 

(3) 

The symbol ( ) denotes an ensemble average over elec- 
trons. 

We introduce the following variable definitions: 

*,=^-5z , 

A =u exp(/6z) . 

(4a) 

(4b) 

(4c) 

(4d) 

Here y0 is the initial energy of the electron beam, taken 
to be monoenergetic. By linearizing Eqs. (2) around the 
equilibrium, r/0 = 0, <exp(-/*„)> =0, ^0=0, and intro- 
ducing collective variables x =- <;'5*exp( — W0)) and 
y = ( T exp( -/♦„)), where 8*; =*y -*;o, r, and A are 
small quantities, we obtain the system of equations 

dx 
—r- inv —if A 
dz 

dy_ = 

dz 
if A 

JL + liL 
dz      c dt 

A =i8A + ig(x —y) , 

(5a) 

(5b) 

(5c) 

where f = k,au.A2y2), g =a-aw/(2ksc
2y0), and h 

= 2ku,y-r/yl Note that in Eq. (5c) the parameter g de- 
pends on the density of the electron beam and is zero out- 
side the beam. Inspection of the analogous equation in 
Ref. 1 [Eq. (4c)] shows that the explicit dependence of the 
radiation equation on the electron density is obscured by 
the dimensionless variables used. Since the phenomenon 
of superradiance occurs at the edges of an electron beam, 
it is important to track this density dependence explicitly 
in order that the boundary conditions on the beam can be 
imposed correctly. 

We assume that the electrons are continuously distri- 
buted along the interaction region inside the pulse so that 
the electron beam can be treated as a fluid, each element 
of which moves at the average speed j3„ = V, /c. Hence 
the Lagrangian derivative along z in Eqs. (5a) and (5b) 
can be replaced by the Eulerian derivative, that is, 

d _ 3   ,    1    8 
dz     dz  ' ß,,c dt (6) 

It is convenient to transform to the coordinates 

z —ß,ct 

1-0.. 

(7) 

(8) 

where  r  measures  the  position   in   the  electron-beam 
frame.   We choose the origin z=0 to coincide with the 

beginning of the undulator. Equations (5) can then be 
solved by Laplace transforms. For a function F(£,T), the 
Laplace transform is defined by 

:J"Kcf|exp(-p£)F(£,r) . F(p,r)= J    d§exp(-p£)F(£,T) . (9) 

Equations (5) then yield the ordinary differential equation 

dA_ 
dr 

■ + p —ib — lfg__ifgh 

■A0+ig + —— ,     (10) 

where A0=A(z=0,r), X0=X(Z=0,T), and y0=y(z 
= 0,T) represent initial conditions at z=0. For simplicity 
we will take y0=0, and assume that the initial electron 
and optical pulses to be rectangular and of lengths LB 

and L, respectively, with their trailing edges aligned at 
z = 0 when r—0.  Note that the slippage is then given by 

III. ANALYTICAL SOLUTIONS 
FOR ZERO INITIAL RADIATION FIELD 

In order to compare the results of our analysis with 
that of Ref. 1, we first consider the simple case A0=0. 
Then Eq. (10) can be integrated in r to give 

A(p,r) = 

igx0 

pMp) 

ig*o 
pk(p) 

•M-expt-A^h-]),   0<r<L'B 

■exp[-(p-i5){T-L'B)] 
(11) 

X\l-exp[-Mp)L'B]\,   L'B<r 

where Up)=p -ib-2fg/p -ifgh/p2 and L'B=LB/{\ 
—/?;,). In obtaining Eq. (11), we have imposed the condi- 
tion that /f is continuous at r=L'B. 

The inverse Laplace transform of A(p,r) is given by 
the standard formula 

1       rc»~ly: 

A{^T)=T-}C „ix
e*P(P^A(p,T)dp , (12) 

where c0 is chosen large enough so that all singularities 
of the integrand lie to the left of the straight line along 
which the integral is taken. From Eq. (11), we then ob- 
tain the following solutions for A($,r): for 0<r<L'B 

and £> r 

A =Res 
'gx0 

pk(p) 
■exp[p£-l(ph] (13) 

p=0 

where Rest )|p=0 denotes the Cauchy residue at p = 0. 
FOT$<T<LB 

A= y 'gx°Pl 

i = \ lPi-pmHPi-p„) 
exp(^g),   l^m^n (14) 

where p, (/= 1,2,3) are the three roots of the cubic equa- 
tion p2),(p) = 0. For i>r>L'B 
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A =Res 'g*o 
pUp) 

exp[-(/7-/5)(r-£^; 

■Up)L'B+p$] (15) 
=o 

For T>%>T-L'B and T>L B 

i 

2 
l8xoPi 

l=£m¥=n .     (16) 

Finally, for r> g +LB B 

=0. (17) 

Note that solutions (13) and (14) are similar to those ob- 
tained by Bonifacio et al.' Solution (13) is the superradi- 
ant solution. 

On the basis of the solutions given above, we can de- 
pict schematically the optical amplitude \A\ as a function 
of T at a fixed value of £  Figure 1(a) describes the case 

1*1 

(14) 
(13) (16) 

la) 

« L'B  «^ 

(b) 

f = L'a K 

1*1 

FIG. 1. Schematic plots of the optical amplitude as a func- 
tion of r, in the case of zero initial optical field. The amplitude 
is viewed at three positions in the undulator: (a) S <LB (or 
i<L'„), (b) S=LB (or 5 = 1«), and (c) S>LB (or s>LB). The 
rectangles stand for the electron pulse and the number in 
parentheses above each sector of a curve is the equation number 
in the text that describes that sector. 

S <Lg (or £<L'B), which corresponds to the long-pulse 
limit. There are three regions: the exponentially growing 
region {£+L'B>T> L'B), the steady-state region 
(LB > T> £), and the superradiant region (£> r> 0) Fig- 
ure Kb) describes the special case S=LB, in which case 
the steady-state region disappears. Figures 1(a) and Kb) 
are similar to that given in Ref. 1. 

Figure   1(c)  describes  the case S>LB   (or £>L'B), 
which corresponds to a short electron pulse. In this case 
our results are significantly different from the results of 
Ref. 1, in which no distinction is made between the cases 
S=LB and S>LB.  Contrasting Figs. 1(a) and Kb), we 
note that for S > LB a new region appears for r in the 
range L'B<T<^. The solution for this region is given by 
Eq. (15), and is of the superradiant type.   The physical 
mechanism for the occurrence of this region is as follows. 
As  the  radiation  pulse interacts with  and eventually 
passes over the leading edge of the electron pulse, the 
superradiance within the electron pulse grows and even- 
tually slips out of the leading edge of the electron pulse. 
However, once the radiation slips out of the electron 
pulse, it can no longer grow, and merely oscillates with 
the phase exp(/5r), with an amplitude that depends on 
(§ — T). 

IV. ANALYTICAL SOLUTIONS 
WITH NONZERO RADIATION FIELD 

We now study the case when A0=£0. For specificity, 
we assume that the electron and optical pulses are rec- 
tangular, as is shown in Fig. 2. In general LB¥=L, and we 
allow for both possibilities, LB>Lor LR <L. We define 
L'=LAl -£,,). 

We first look at the case L > LB. In this case, the solu- 
tion to Eq. (10) is 

A = 

A0 + igx0/p 

Up) 
A0 + igx0/p 

l-exp[-k(p)r]\,   0<T<L'B 

exp[-(p-/5)(i— L'B)} Up) 

X|l-exp[-A.(/»I^]| 

A. 
l-exp[-(/7-/8)(r-Ii)]j p —id 

A0 + igx0/p 
L'<r<L'    (18) 

exp[-(p-/5)(r-I£)] 
Up) 

X\l-exp[-Up)L'B]\ 
Ao + J—gM-expt-(p-/8)(L'-L;)]| 

Xexp[-(/7-/8)(T-Z.')],   L'<r. 

The inverse Laplace transform gives the following solu- 
tions: forO<r<min(Z,;,c) 

A =Res 
A0 + igxu/p 

Up) 
exp[-Up)r+pt] 

/>=0 

(19) 
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L'„ L' 

FIG. 2. Initial electron shot noise and optical input pulse. 
Here the electron pulse length L'B can be either greater or small- 
er than the optical pulse length L'. 

which is again the superradiant solution. For £<T<L'B 

(p,A0+igx0)p, 
■expip/Z;),   ly^m^n 

/ = i (Pi~PmHPi~P„'> 

which is the steady-state solution. For Lg < r < £ 

A0 + igx0/p 

(20) 

A =Res 
Up) 

Xexp[p£ — Up)L'B 

■(p-i5)(T-L'B)] (21) 
/p=0 

which is the superradiance that has slipped out of the 
leading edge of the electron pulse. For max(g,L'B) 
<r<i+L'B 

A -exp[;5(7-Lfl)] £ ~. ~. r 
/ = |   (Pl-PmHPl-P„) 

Xexp[Pl(£-T+L'B)] , 

For £ + L'B<r<£ + L' 

A = /40exp(/8£) , 

(22) 

(23) 

which is the part of the initial optical pulse that does not 
interact with the electron pulse, so that 
u = A exp( — /8z)= A0   remains  constant.    Finally,   for 
$ + L'<T 

A =0 (A24) 

The solutions (19)—(24) are schematically drawn in Fig. 3. 
Figure 3(a) describes the case £<L'B, Fig. 3(b) the case 
i=L'B, and in Fig. 3(c) the case £,>L'B. Note that these 
solutions reduce to the special case discussed in Sec. Ill if 
we set A0=0. 

We now show that the radiation growing at the trailing 
edge has indeed the scaling properties of superradiance. 
To see this, we look at the first term in (19), which we 
write as 

= Res 
Up 

-exp[-A.(p)r+/>£] (25) 
p=0 

To make the problem simpler, we assume that the FEL is 

perfectly tuned, so that 8 = 0, and we neglect the small 
term 2fg/p in Up). Then A, becomes 

= Res 
A0P' 

p'-ifgh 

Xexp p{£-T) + ifgh 

l*g"  /=0n=0m=0 ifgh 

p=0 

($-T)n(ifgh)" 
n \m! 

(26) 

where 3/+«— 2m =—3. In the short-pulse limit, 
fghr«\, and at T=%, only N=0 terms contribute. 
Therefore the leading term in (26) is the term with « = 0, 
m = 3, and/=l. Then 

■o 1    (ifghr? _ iA 
fghr-n, ,       (27) 1     ifgh ifgh       6 6 

which implies that the radiation intensity scales as n}. 
We now consider the complementary case L <LB. 

This case describes what happens in an FEL oscillator in 

(20) 

nil 

(a) 

(22) 
(23) 

^1 1  

I                                                        (24) 

.               .                 1 
C+L'      L'        £+L' 

(b) 

(19)                1 \    (22) 

(24) 

y 
s' , 

i-^ 2L'n C+L' 

(19)                  / 

y (2D 

\                                           (c) 
y  (22) 

/ 
X.                                                     (24) 

.                 ,                             1 
L'    e*fa £+L' 

FIG. 3. Schematic plots of the optical field amplitude as a 
function of r, in the case of a nonzero initial optical pulse and 
L > LB (or L' > L'B ). The amplitude is viewed at three positions 
in the undulator: (a) S <LB (or £<L'B), (b) S=L„ (or t;=L'B), 
and (c) S >LB (or £>L'B). 
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which the optical pulse is shorter than the electron pulse 
and their trailing edges are aligned at the entry of the un- 
dulator. In this case, the solution to Eq. (10) is 

: i,   (A0 + igx0/Pl)pl 

/ = 1   (Pl-Pm^Pl-Pn) 
exp(p^),   l¥=m=£n ,        (30) 

A0+igx0/p 

Up) 

A0 + igx0/p 

Up) 

A = 

\l-exp[-Uph]\,   0<T<L' 

exp[-Up)(r~L')] 

— exp[—Up)r]\ 

which is the same as (20) and is the steady-state solution. 
For L'< r < mint£,£;,) and L'< £ 

A =Res 
A0+igx0/p 

Up) 

'Sxo/P 
+   ..  .    \l-exp[-X(p)(T-L')]\ , 

Up) 

AQ + igx0/p 

exp[-Up)(r-L')] 

—exp[—Uph]\exp(pi;) 

igx0 

Up) 

L'<T<L'B    (28) 

\exp[-Up)(L'B-L')]' 

-exp[-Up)L'B]\ 

pUp) 
exp[-Up)(£-L') 

+P$] 
p=0 

.   (31) 

igx0/p 
+~j^r^~ex^-Mp]{LB-L'^\ 

Xnp[-(p-ib)(T-L'B)],   L'B<r. 

For max(|-,I') <r <min(£ + L',L'B) and §<L'B 

AQ A =Res exp[-Up)(T-L')+p£] 
Up) 

+ y    <-PiAo + >gxo)Pi 

/ = i (Pi-pm)(Pi-p„) 

p=0 

exp(pi£),   l¥=m^n       (32) 

The inverse Laplace transformation of (28) gives the       which is a new solution.  The first term in (32) is of the 
i]™.,;„„ ,„o„u,.. *•„, n<r_ ^_:_/<- r,, same form as Eq_ (25)> describing superradiance growing 

from A0. Therefore (32) is a combination of the superra- 
diant and steady-state solutions.   For §+L' <T<$+L'B 

following results: for 0<T<min(g,L') 

A0+igx0/p 
A =Res 

Up) 
-exp[-Uph+p{;] 

p=0 

(29) 

which is the same as Eq. (19) and is the superradiant solu- 
tion. For §<T<L' 

 —— 1 

and %<L'B-L' 

A=i  *™  
i = \ (Pt-pm)(Pi-pn. 

■exp(pi§),   l¥=m=£n (33) 

is another steady-state solution. For L'B<T<^ 

A =Res 
Up) 

'gx0 

exp[-Up)(LB-L')]-exp{-Up)LB]\ 

exp[-Up)(LB-L')]exp[-(p-ib)(T-L'B)+p%] 
PUp 

For max(£,L'B)<T<£+L' and £>L'B-L' 

2,    (PiA0 + igx0)p, 
A=^   (o-o    )ln-n   )

exP[-(l/-'-S)(T-L^)+p,g-] 
/=l   \Pl     Pm >{Pl      Pn I 

'    A, 

p=0 
(34) 

+ Res 
*o 

Up) 
exp[-Up)(LB-L')-(p-ib)(T-LB)+p%] (35) 

p=0 

which is again a combination of the steady-state and su- 
perradiant solutions. For max(§ +L',L'B)<T<t+L'B 

A= y 'gX°Pl 

/ = i lPi-PmHPi-p„) 

Xexp[-(p,-i5)(T-L'B)+p,£] 

For ti + L'B <■ 

A =0 . 

(36) 

(37) 

Solutions (29)-(37) for the amplitude of the optical pulse 
are represented schematically in Figs. 4-6. In Fig. 4, we 
plot the case S <L (or £<L'), which describes a long 
electron pulse. When the slippage is small so that 
S+L <LB (or g + L'<LB), there are, as shown in Fig. 
4(a), two regions of steady-state behavior separated by a 
region that contains a combination of steady-state and su- 
perradiant behavior. However, as shown in Fig. 4(b), 
when the slippage increases so that S+L>LB, the 
steady-state behavior in the leading edge disappears. Fig- 
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|A| 1*1 

i        L'       L'B    f+L'  C+L'B 

FIG. 4. Schematic plots of the optical field amplitude as a 
function of - in the case *0=0. A„*= 0, and L <L„. The ampli- 
tude is viewed at positions S<L (or c<L') and for (a) 
ST I <L„ iorZ+L' <L'B),ib)S+L > L„~ 

ure 5 shows similar plots except that now L <S <LB (or 
L' <$ <L'B), and therefore a superradiant region replaces 
the steady-state region at the trailing edge. Figure 6 
shows the case LB <S (or L'B <s"), which corresponds to 
the short-pulse limit. 

Note an interesting new feature in each of the Figs. 
(4)-(6): there exists a region that is a combination of the 
steady-state and superradiant solutions occurring at the 
leading edge of the optical pulse. The physical explana- 
tion for the occurrence of this "semi-superradiant" re- 
gion is as follows. In this region, the steady-state part of 
the radiation field is generated by the standard FEL 
mechanism from the noise sources A0 and ;c0. However, 

1*1 

FIG. 5. Schematic plots of the optical field amplitude at posi- 
tions I <S <LB (or L' <Q <L'B ) as a function of r, in the case 
x„=^0, A„=0, and L<L„. (a) is for S+L<LB (or 
i + L' <L'„) and (b) is forSTL > LB (or z+L' > L'B ). 

FIG. 6. Schematic plot of the optical field amplitude at posi- 
tions S > LB as a function of r when xt)=£0, /10T0, and L <LB. 

as the electrons in front of the initial optical pulse slip 
into the pulse, they experience rapidly varying external 
fields and emit spontaneous radiation which contributes 
to superradiance, the magnitude of which depends on 
A0. However, after this region slips over the entire elec- 
tron pulse, the growth of the superradiant component is 
stopped, with the consequence that the radiation ampli- 
tude in the leading edge is usually smaller than that at the 
trailing edge. 

V. SUMMARY 

In this paper, we have given a linear theory of superra- 
diance for a free-electron laser in the high-gain Compton 
regime. One of the aims of this paper has been to de- 
scribe the leading as well as the trailing edges of the opti- 
cal pulse, and to fix correctly the boundary conditions at 
the edges of the electron pulse. We caution that compu- 
tational methods that do not correctly incorporate these 
boundary conditions may produce spurious behavior in 
the radiation field dynamics. 

When the FEL evolves from the initial conditions of 
zero initial optical field, which is the case considered in 
Ref. 1, we show that the evolution of the radiation pulse 
proceeds in qualitatively different ways in the three cases 
S <LB, S —LB, and 5 >LB. We then extend the calcula- 
tion of Ref. 1 to allow for the presence of an initial opti- 
cal pulse of length L, which may be greater or smaller 
than LB. Whereas superradiance is a persistent feature of 
the radiation field at the trailing edge of the electron 
beam, we find that it can also occur at the leading edge of 
the optical pulse when L <LB. 

The one-dimensional linear theory presented here is a 
first step, but leaves several interesting questions 
unanswered. The nonlinear evolution of superradiance is 
a subject of considerable interest. Though superradiance 
and sidebands differ in their growth rates, numerical 
simulations seem to suggest that they are essentially in- 
distinguishable in their nonlinear states. This feature 
deserves closer scrutiny. We also note that the optical 
"spikes" seen in numerical simulations are sufficiently 
singular that the "slowly varying" approximation rou- 
tinely used for the radiation field in a high-gain FE1 is 
open to question. 
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Ginzburg-Landau equation: A nonlinear model for the radiation field of a free-electron laser 
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It is shown that the nonlinear dynamics of the radiation field in a free-electron laser can be 
modeled by the Ginzburg-Landau equation. The refractive index of the electron beam in the non- 
linear regime and the saturation intensity of the radiation field are obtained from WKB theory. Al- 
though the Ginzburg-Landau equation does not permit soliton solutions, it is shown that certain 
types of solitary-wave solutions have a strong resemblance to spikes observed in simulations and ex- 
periments. 

Free-electron-laser (FED theory has been very success- 
ful in describing FEL operation in the linear regime, and 
various predictions of linear theory have been shown to 
be in good agreement with experiments.1 However, in 
the regime of saturated growth, which is strongly 
influenced by nonlinear effects, FEL physics has been 
studied largely in connection with specific problems such 
as efficiency enhancement techniques2 and trapped- 
particle phenomena. The latter includes the important 
sideband instability,3 which is a consequence of the syn- 
chrotron oscillation of the electrons trapped in potential 
wells of the electron bunches, together with the finite slip- 
page of the optical wave with respect to the moving elec- 
trons. A basic understanding of these nonlinear effects 
has been developed through analytical studies in idealized 
models. While these analyses provide qualitative results 
and insights for specific problems, the burden of a general 
nonlinear description has rested on computer simula- 
tions, which have played a very important role both in 
the design of FEL's and the interpretation of experi- 
ments. 

This paper is motivated in part by an interesting and 
somewhat less studied phenomenon called "spiking," 
which has been observed in computer simulations and 
more recently, in experiments carried out by the Warren, 

the distance along the undulator axis, t' = t—z/vg is the 
retarded time for a radiation pulse propagating with 
group velocity vg, and a, ß, and k0 are complex constants 
to be given later. The appearance of the GLE in a model 
of FEL nonlinear dynamics is less surprising than may 
appear at first glance. After all, there exists a useful anal- 
ogy between an optical fiber and an electron beam,8 and 
in certain types of dielectric fibers, it is known that the 
radiation field obeys a nonlinear Schrödinger equation,9 

which is nothing but a special case of the GLE. In order 
to strengthen further the analogy between an electron 
beam and a fiber, we derive an approximate expression 
for the refractive index of the electron beam in the non- 
linear regime from a WKB theory. This is one of the im- 
portant results of the present theory. 

The GLE is a nonintegrable partial differential equa- 
tion, and does not have soliton solutions. We are, there- 
fore, led to the conclusion that it is not possible to gen- 
erate optical solitons spontaneously from FEL dynamics. 
We note that solitons can still be created in principle, as 
they are in conventional lasers, by propagating the radia- 
tion output from a FEL through a dielectric fiber,10 but 
this is not the subject of the present paper. 

Though the GLE does not admit soliton solutions, it 
has solitary-wave solutions,11 which can be obtained by 

Goldstein,  and  Newnam,    Dodd  and  Marshall,5  and       sophisticated variants of the Painleve analysis.12'13   We 
Richman, Madey, and Szarmes.6 "Spikes" generally 
occur in the high-power, saturated-signal regime, and are 
narrow, high-intensity radiation pulses that are generated 
spontaneously. A qualitative physical mechanism has 
been outlined by Warren and co-workers, who attribute 
the generation of spikes to the growth of sidebands.4 

In this paper, we propose a simple, yet fairly general, 
model for the nonlinear evolution of the radiation field in 
a FEL. This model enables us to understand the spatial 
and temporal structure of the radiation field in the non- 
linear regime. Preliminary results of this work were 
presented elsewhere.7 We show that the radiation field 
obeys approximately the Ginzburg-Landau equation 
(GLE), 

show that a class of these solutions exhibits "spiking" be- 
havior with characteristic widths that appear to be in 
fairly good agreement with experimental measure- 
ments4-6 and numerical solutions. 

We   begin   our  analysis  with   the   well-known  one- 
dimensional equations for a Compton FEL:2'14 

dz 

dxjjj 

~dT 

ksasaw 
sin(ipj+4>) , 

rj 

ksawas 
H 2—cos(xpj+<f>) , 

.3 A      a d2A 
1 dz'      2 3f'2 + X0A+ß\A\2A^0 , (1) 

du ^■awC0P /exp(-ttft) 
dz     ' lk,c2 \ r 

(2a) 

(2b) 

(2c) 

where A is the amplitude of the radiation field, z'=z is 
where z is the direction of propagation of the electron 
and optical beams and also coincides with the undulator 
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axis, il>j+<f> is the relative phase of the electron (of rest 
mass m) with respect to the radiation field, and yjinc2 is 
its energy; the vector potential A=AU,+ AJ, 
aw=edw/mc2, as=eAs/mc2; kw, ks=co/c are the wave 
numbers of the undulator and radiation fields, respective- 
ly; co is the carrier frequency, M=aiexp(/«^) is the com- 
plex amplitude of the radiation field, and 
Yr = [ks(l+a2)/2kw]l/2 is the resonant energy. It has 
been shown in Ref. 15 that Eqs. (2) can be modeled by an 
approximate reduced set of equations that involve only 
the collective variables x = (exp[ — i{if>j — i>r)]), 
_y = <[(r;-ro)/ro]exp[-/(^.-Vr)]), and A 
= ucxp(irpr), where x[>r is defined by the relation 
drf/r/dz = kw{\-y2

r/y\), and y0 is the energy of the ini- 
tially monoenergetic electron beam. In our notation, 
these reduced equations can be written as 

—r-—i8A + igx 
dz 

dx 
dz 

— —ihy 

dy 
— =ifA -2ihy0(y -xy0) 

+ 2i8xy0-2if(x*A + A*x)x , 

(3a) 

(3b) 

(3c) 

where b = kw(\-y2
r/y2), f = ksaw/(2y2), g=co2

paw/ 
(2^7oc2)> h=ks(l+a2)/yl are parameters, and 
yo — ((Yj — Yo)/Yo)- For a detailed derivation of Eqs. 
(3), the reader is referred to Ref. 15. We note that Eqs. 
(3) admit an energy conservation law, given explicitly by 
J'o + (//?)(MI2-|a0l2)=0. where a0 = A (z = 0) is the 
initial amplitude of the radiation field and is usually small 
compared with A in the saturated regime. 

Equations (3a) and (3b) can be rewritten, respectively, 
as x={A-ibA)Aig) and y = ix/h =( Ä-ibA )/(gh), 
where the overdot denotes d/dz. Substituting expres- 
sions for x and y in Eq. (3c), we obtain a third-order 
differential equation for A: 

A -Ub-2iehyQ)Ä + 2ehyQ(2b-ehy0)Ä 

+ ^-(ÄA*-Ä*A)(A-iSA) 
ig 

-ifghA + 2ieyob(ehy0-b)A =0 ,     (4) 

in which we have introduced a small parameter e to tag 
all terms containing y0, which is a small quantity for 
most FEL's. We will eventually set e to unity. 

Equation (4) can be solved by a WKB method. We 
write A = ^oexP[(2n°W~1S„ >> where A0 is a constant 
and Sn =S„(z) are slowly varying functions of z. We as- 
sume that Sn=eSn(n=0,1,2, . . . ) and S0 = e250. Using 
the conservation relation yQ + (f/g)( I A\2- |a0|

2) = 0 and 
the assumption \A\ »|a0|, we can then solve Eq. (5) by 
equating coefficients of e". To 0(e°), we obtain 

= 0 ^ o -ibS2-ifgh (5) 

which reduces to the well-known linear cubic eigenvalue 
equation16 X3

0-bkl+fgh =0 if we set S0 = iX0. To 0(e), 
Eq. (4) gives 

'Sl+(3S0-i8)Sl+(3Sl-2iSS0)S1=Qy0 , (6) 

where Q = -S2+2ibS0-(S0-S *0)S0+ib(S0-S $) 
+ 5 . We now transform from z to yQ as the new 
independent variable by writing d/dz = (d\ A\2/ 
dz)(d/d\ A\2), whereupon using the WKB representation 
and the energy conservation relation we 
obtain d/dz^(S0+S ^)y0(d/dy0) and d2/dz2 

^(S0+So)2y0(d/dy0) to the lowest order in e. Equa- 
tion (6) then reduces to 

ay0 

dS, 
-l— + bSl 
dy0 

-Qy0, (7) 

where a=(S0+S$)(4SQ+S$-i6) and b = 3S2
0-2i8S0. 

Equation (7) can be integrated with the initial condition 
5,=0 when j>0=0 (the linear regime). The solution is 
Sl=[Q/(a +b)]y0. To O(y0), we thus obtain the index 
of refraction of the electron beam in the nonlinear re- 
gime, n = l + (S0+Si)/iks = l+k/ks, where A.=X0 
+ß\A\2, and 

ß= 
(l0-b)(X0 + 2Rek()-5) 2fh  

g    2ImA0[2ImX0-/(3A.0-5)]-3^ + 25A.0 

(8) 

We remark that the quadratic dependence of n on \A\ 
means that in the saturation regime, even when gain is 
negligible, refractive optical guiding can, in principle, aid 
the confinement of radiation in a FEL. This effect has 
been observed in numerical simulations,7'17 but remains 
to be verified experimentally.18 

In Fig. 1, we compare the numerical results obtained 
by integrating the original FEL equations (2) with those 
obtained from the reduced equations (3) for a typical set 
of parameters. On the same plot, we show 
A(z)=A0exp(ikz) obtained from  the WKB analysis. 

z (cm) 

FIG. 1. Comparison o(\A\ and 6 calculated from the origi- 
nal equations (2) (solid lines), reduced equations (3) (dashed- 
dotted lines), and WKB analysis (dotted lines). 
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Whereas the analytical solution is remarkably good in 
predicting the phase shift, the prediction for | A | is less 
accurate. In particular, the analysis predicts the approxi- 
mate average saturation level for \A\, but cannot repro- 
duce the oscillations caused by synchrotron motion. [The 
average intensity of the saturated radiation field can be 
estimated by simply setting lm(n)=0, and is given by 
Ml = — ImA^/Im/?.] In order to account for the oscilla- 
tions at saturation, higher-order WKB calculations are 
needed.   Note, however, that neglect of these higher- 
order terms in the nonlinear analysis for \A\ does not 
mean that the physics of synchrotron oscillations has 
been eliminated altogether. These oscillations are impli- 
citly contained in the electron dynamical equations that 
involve Eqs. (3b) and (3c). 

We have considered so far the single-frequency FEL 
equations. In the presence of multiple frequencies, it is 
extremely difficult to obtain a description of FEL dynam- 
ics in terms of a reduced set of equations involving collec- 
tive variables. Instead, we exploit the analogy between 
the electron beam and an optical fiber to obtain heuristi- 
cally an equation for the radiation field. We consider an 
optical signal of the form A(z,t)= A(z,t)exp(ikz-ico0t), 
where k0=aa/c, and A{z,t) is a slowly varying ampli- 
tude. Note that by including the time dependence in the 
amplitude A(z,t), we have allowed for the excitation of 
multiple modes. At a given point z =z0, the Fourier 
transformation of this signal is defined by the relation 

~4(z0,Aco)= —==-J_    dt'exp(ik0z0 + i&<üt')A(z0,t') , 
Vli 

(9) 

where  A<a — a — co0.   Each frequency component  is ad- 
vanced along i according to the relation 

Ä(z0
Jrdz,A<ü)=Ä'{z0,&co)exp{i[a)/c+klu)]dz\ . 

The inverse Fourier transform of A(z0+dz,A<o) in the 
limit dz—0 then gives 

dAlz,:)       i    c ^-x r TK 
 H = ^~J       d&co dt'A(z,t') dz 2- J - = •> - x 

Xexp[/Acu(r' — r)] 

Aw 
-rklo)) 

(10) 

For a FEL, k(a) usually has a narrow bandwidth around 
the maximum linear gain frequency on0. We can, there- 
fore, expand k(a) in a Taylor series around co0, and write 

Ad) 

c 
 + ktcj)^k0(coQ)+ß\ A\2-rv~l&cü 

JrUa,+ia-,)Aco2 + (11) 

where ug— c/{1 -rcak/da) is the group velocity of the 
signal, a,-Ha2 = 32Ä.0/3ö2[w=av 

ai is the group velocity 

dispersion and a, is the gain dispersion, and ß is the com- 
plex coefficient defined by Eq. (8). Substituting Eq. (11) in 

(10) yields 

dA 
-£--'k0(o>0)A-vs ' —- 

dA      /(a,-Kcr,) tfA 

dt 
^-+iß\A\2A, 

(12) 

which can be reduced to the GLE (1) by transforming to 
variables z'=z,f = f-z/y?,a = a,+/a2. 

The GLE (1), with complex coefficients, is not integr- 
ate in general.12 This rules out the possibility of spon- 
taneous soliton formation during the nonlinear evolution 
of a FEL. However, special solitary wave solutions can 
be constructed following the methods described in Refs. 
11 and 12. These solutions are 

Aiz',t') = - q exp(— iClz') 

[zxp(Kt') + txp(-Kt') 

where k0 = £-iX, ß=ßr+ißit 

8^(a,+/a2)(l-(-;o-)(2 + ((T) 

1 ~ri<7 

n= 

ß[a2(\ 

,Y(a,(l-a2 

-a2) + 2aal 

— laa-,} 

K = 

a,( l—cr2) + 2aal 

2Y 

+ f . 

a,(a2-l)- ■2axa 

and a satisfies the quadratic equation 

,       alßr+alßi 

aßr-aßi 
■(7-2 = 0 

(13) 

(14a) 

(14b) 

(14c) 

(15) 

Equation (15) has two real roots, and produces two fami- 
lies of solitary-wave solutions. In order to obtain simple 
analytical formulas for these solutions, we make certain 
approximations. First, we note that for a FEL operating 
near the maximum linear gain frequency <u0, Re(/i) is ap- 
proximately a linear function of co.17 Therefore, we set 
a,=0 in Eq. (15), which reduces to cr2-3(0,//?, )CJ 

-2 = 0. For the case |/?,| > \ßr\, which is satisfied by the 
parameters of the FEL's considered here, the two roots 
obey the inequalities cr2»l and a\«\. When 
a2 = cr2»l, Kx^{2x/[ala\)]xn is real," and Eq. (13) 
gives 

\A\2 = M. 
4 cosh2( K,t') 

(16) 

The solution (16) for Ml2 has a single peak at t' — O 
(z = ugt)  with  the half-width  Af,^,-1 

a = a1,K1^i^2x/a1, and Eq. (13) gives 

Ml2=- \jV 
4cosi.K\r' 

In  the case 

(17) 

The solution (17) exhibits periodic, finite-time singulari- 
ties, as shown in Fig. 2. The width of each peak is given 
by At2^K7\ and the separation between neighboring 
peaks is AT^rrKT1- Clearly, at the singularities, our 
model beaks down, and higher-order terms in the expan- 
sion of Mco) become significant. 
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We now show that the frequency of the periodic solu- 
tion (17) has the same parametric dependence and is of 
the same order of magnitude as the amplitude oscillation 
frequency expected from sideband theory.3 To see this, 
we jiote that the frequency of solution (17) is 
txco-V-2x/a2. Since at saturation Ml -V^/lraß, we 
write A« = [(-2a,/<*,)•*Iin0]"2. From the cubic 
equation k^-ökl+fgh =0, assuming 5=0, we obtain 

1/3 and ^o-~fgh, which gives £=—j(fgh) 
Af==(V3/2)(/g/i)i/3. Also, from the cubic equation, it 
follows by straightforward algebra that a2 

= Im(d2kQ/d<o2)^[-^3A36<o2)][h2/(fgh)w:i]. From 
Eq. (8), we get Im/5=s{36V3/241 )(fh/g). Using these 
expressions for a2, x, and Im/?, we then obtain 

AüJ = 0.9 \2ü 
as°u 

l+a' 

1/2 1 

(18) 

The expression in parentheses on the right-hand side of 
Eq. (18) is the same as the frequency separation of a side- 
band from the carrier signal predicted by standard side- 
band theory/ We also note that solutions resembling the 
solitary-wave solutions can be generated by the time- 
dependent FEL equations, which include the effect of 
slippage. We have used our computer code19 to carry out 
simulations of the experiment in Ref. 5.  The simulation 
shows   "spikes"   of width   Ar =25   psec   separated   by 
periods of 80 psec.  [See Fig. 3(a) of Ref. 5.] For the FEL 
described in Ref. 5, we calculate numerically the parame- 
ters *=0.11 cm   ' and a, = 5.3X10-2' secVcm.   The 
analytical solutions (17) then predict periodic spikes of 
width   Ar2 = 154  psec.    The   experimentally   measured 
width —150 psec. 

We now compare the analytical solutions with results 
from the experiment of Ref. 4, for which kw =2.7 cm, 
aw=0.&, A., =9.85 pm, 7 = 39.3 A, rb=QA cm, and 
YQ — 42.7. From the linear cubic equation (5), we find 
* = 0.018 cm-1 and a: = 2.0X 10-27 secVcm; then Eq. 
(17) gives Ar2=0.24 psec. The experimentally observed 
width is 0.2 psec.4 

Finally, in the FEL experiment in Ref. 6, the pulse sep- 
aration (not width) is measured by an autocorrelation 
technique and is confirmed by numerical simulations. By 
using the parameters given in Ref. 6 (except that the en- 
ergy spread is taken to be zero and the electron-beam ra- 
dius to be 0.02 cm) in the cubic equation, we get 
* = 0.026 cm-', a2= 1.24X 10~24 secVcm. The theoreti- 
cally predicted pulse separation for the solution (17) is 
A7 = 0.22 psec. The experimentally measured separation 

FIG.  2.   Solitary-wave solutions of the Ginzburg-Landau 
equation. Solution (16) is plotted in (a) and solution (17) in (b). 

is 0.8 psec. 
We emphasize that our model is rather simple, and the 

remarkable accord with experimental results (from Refs. 
4 and 5) should therefore be taken with a grain of salt. 
However, we believe that the essential idea of spikes as a 
form of solitary wave propagating in the "fiber," that is, 
the electron beam, is qualitatively supported by experi- 
mental results. 

In comparing theory with experiments, we have so far 
used the singular, periodic solution (17). The solution 
(16), which is nonsingular but aperiodic, also predicts 
spike widths that are of the same order as those obtained 
from (17). Clearly, initial and boundary conditions, as 
well as issues of stability, will determine the dominance of 
particular solitary-wave solutions in a given experiment. 

Note added in proof. After the completion of this 
work, we found that for a small-gain oscillator, a 
Ginzburg-Landau equation (of rather different form than 
has been presented in this paper) has been given by Col- 
son and Ride.20 

We are deeply indebted to Professor T. C. Marshall for 
many stimulating discussions, and to Mr. J. Cao for his 
involvement and interest. This work is supported by the 
Office of Naval Research, Grant No. N0014-89-J-1652 
and the National Science Foundation, Grant No. ECS- 
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"Spiking" Radiation in the Columbia Free Electron 
Laser 

JAMES W.  DODD. STUDENT MEMBER, IEEE. AND T. C.  MARSHALL 

Abstract— We report the observation of "spikes" of high-intensity 
radiation emitted from a 2-mm wavelength Raman free electron laser 
(FED oscillator. The spikes are correlated with a well-developed side- 
band spectrum, including several sideband harmonics, together with 
the carrier. A pulse width - 150 ps is obtained from analysis of data 
obtained with a two-slit "Young's experiment." An even shorter 
pulsewidth results from a numerical model. Using an elementary model 
of the spike, we estimate that the peak spike pulse power is - 100 MW. 

I.  INTRODUCTION 

SPIKES, which are narrow, high-intensity radiation 
pulses, are believed to be a feature of free electron 

laser (FEL) operation at high power with substantial side- 
band production. They have been identified as a feature 
in numerical simulations by Colson and Freedman [1], [2] 
and Quimby [3] and have been studied numerically and 
experimentally by the FEL group at Los Alamos [4]. A 
physical model of the evolution of the spike has been out- 
lined by Warren et al. [4]; beginning with a carrier ac- 
companied by sidebands (frequency modulation), this 
wave can develop amplitude modulation (pulse forma- 
tion) by an energetically favored interaction between the 
fm wave and electrons. An electron originally in reso- 
nance with the carrier loses energy to the wave and drops 
into resonance with the low-frequency sideband. This 
causes the low-frequency sideband to grow, and the wave 
develops amplitude modulation which, in the nonlinear 
limit, causes a "spike." 

Further study by numerical simulation has shown [4] 
that the energy radiated in a spike is drawn from the en- 
ergy of electrons in the slippage distance N\ and in- 
volves an interaction time of about half a synchrotron pe- 
riod in the strong field of the spike. The spiking can 
become chaotic. 

In this paper we show first, numerically, that it is pos- 
sible to form spikes in our Raman FEL that have a dura- 
tion ~ 100 ps. The remainder reports experimental data 
from which we infer the existence of such short high-in- 
tensity pulses. 

Mansucript received July 17, 1989; revised December 22. 1989. This 
work was supported by the Office of Naval Research by Grant N000I4- 
89-J-1652. 

The authors are with the Department of Applied Physics. Columbia Uni- 
versity. New York. NY 10027. 

IEEE Log Number 9035363. 

II. BACKGROUND OF THE EXPERIMENT 

The Columbia FEL is a millimeter-wavelength device 
which produces several MW of power in single pulses that 
last - 100 ns [5]. The operating parameters of the device 
are listed in Table I. For this research the FEL is operated 
as an oscillator with one output mirror serving as an eta- 
Ion. The carrier wavelength of 1.95 mm is accompanied 
by sidebands as well as longer wavelength sideband har- 
monics. The long-wavelength sideband harmonics have 
been studied analytically and numerically by Riyopoulos 
and Tang [6]; we have studied such sidebands numeri- 
cally [5], and more recently we have found that the long- 
wavelength sideband harmonics appear as well. 

Experimentally, we observe the FEL spectrum using a 
grating spectrometer. The sidebands can be prominent 
features of the FEL spectrum. In Fig. 1(a) we show a 
well-developed sideband spectrum consisting of the car- 
rier at 1.95 mm. an upper and lower sideband, and two 
"harmonics" of the long-wavelength sideband. The dif- 
ferent sideband frequencies are not mathematically har- 
monics, nor is it expected that they should be related in 
that way. In Fig. 1(b) we show the simulated spectrum: 
the primary sidebands are indicated by arrows. The long- 
wavelength "harmonic" spectrum is complicated and 
does not correspond to the experimentally observed peaks, 
although it is situated in the correct band of wavelengths: 
but the primary sidebands are in the correct location, con- 
sistent with the laser power. Although we have found from 
numerical studies [7] that it is the TE,, mode which is 
excited by the FEL interaction, the high-power operation 
may introduce some beam asymmetry which could excite 
higher order waveguide modes that would complicate the 
interpretation of this spectrum. The experimental spec- 
trum is not corrected for the response characteristic of the 
detector: The data at the longest wavelengths should be 
multiplied by a factor -0.4 to account for the increasing 
sensitivity of the detector at long wavelengths. 

Having observed strong sidebands in the Columbia FEL 
[8], it is not surprising that we find spikes as well. The 
spike is found in a resonator configuration where substan- 
tial power is developed. The spikes may appear randomly 
or individually or occasionally as a set of "mode-locked" 
pulses spaced by the bounce time of radiation in the res- 
onator. An example is shown in Fig. 2. However, not all 
shots produce spikes, and when they occur, they are su- 
perimposed on the "background" level of FEL radiation. 

0093-3813/90/0600-0447501.00 © 1990 IEEE 
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Fig. I. (a) The spectrum of sideband radiation in the FEL oscillator. Gaps 
in the data-point ensemble correspond to the very low power recorded, 
(b) The numerically generated sideband spectrum using a multifrequency 
code (courtesy of S. Y. Cai) and using the numerical method outlined in 
reference (5J. 

TABLE I 
FEL OPERATING CONDITIONS 

Undulator period (helical) 1.7 cm 
Undulator length 70 cm 
Electron beam energy 800 kV 
Electron beam current 120 A 
Electron beam current densitv - I kA/cm: 

Electron beam diameter 4 mm 
Electron beam pulse length 150 ns 
Waveguide diameter 18 mm 
Guiding field strength 9.5 kG 
Wiggler strength. yi\ /r   = «„ 0.28 
FEL wavelength 2 mm 
Synchrotron period (typical operation) - 20 cm 
Power output several MW 
Configuration oscillator 

A puzzling feature initially was the apparent width of the 
spike, perhaps - 1-2 ns; however, we believe this results 
from the finite bandwidth of the electronics, and actually 
the spikes are far narrower. A 1-D time-dependent simu- 
lation [5] of the experiment, including sidebands and their 
harmonics, reveals a "spike" feature of the laser output 
which is roughly 40 ps in length (Fig. 3). The code is 
time-dependent and the picture is obtained by plotting the 
amplitude of the laser signal as a function of time in one 
interval T, introduced for the convenience of the compu- 

I   J  ( 

20ns/div 

Fig. 2.  A tracing of the diode (accelerator) voltage waveform (above) and 
the FEL power outpul at -2-mm wavelength, showing spikes. 
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Fig. 3. A numerical study of the sideband radiation, showing the forma- 
tion of a spike, (a) Time-dependent power output at the end of the FEL. 
(b) The growth of the long wavelength (upper curve) and short wave- 
length (lower curve) sidebands. Parameters are as in Table I, with «„ = 
0.3. 7 = 2.55. A\ = 40 cm '. Air/ir = 7.4%. and a,(0) = 0.0012. 
where the a quantities are normalized vector potentials. The spike is 
synthesized from the sideband harmonics (courtesy of S. Y. Cai). 

tation, T = 2x/Aw, where Aw is the difference between 
the frequencies of the carrier and the sideband with the 
maximum growth rate. The Schottky-barrier detectors we 
use will respond to pulses this short [9], but the response 
observed will be degraded by the electronics bandwidth 
(500 MHz) and the cables. We have determined that the 
length of cable used accounts for an attenuation of a factor 
of three for the spike signals. 

In Fig. 4 is shown simultaneous radiation at the carrier 
wavelength (1.95 mm) and the long wavelength sideband 
(2.2 mm). Spiking on the carrier and sidebands appears 
to be correlated, as well as on the sideband harmonics; 
however, it is not a good idea to observe spikes through 
the spectrometer in view of the limited bandwidth. 
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Sideband 

Same shot 
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Fig. 4. Simultaneous output of the sideband and carrier observed through 

the spectrometer, showing spiking features: the spikes may be partly 
dispersed by the finite spectrometer bandwidth ( - I CA ). 

III. THE SPIKE EXPERIMENT 

The spike pulse length can be determined with the aid 
of a "two-slit" Young's experiment (Fig. 5). Neglecting 
for the moment the structure of the diffraction pattern of 
the slit (determined by the slit width) and the spacing of 
the interference fringes (made sufficiently close by a wide 
slit separation), we examine how the intensity of the FEL 
radiation emitted by the two slits depends on the separa- 
tion of the two-square-law Schottky-barrier detectors A 
and B, as shown. The detector A is placed at the sym- 
metric location where the travel time from the two slits is 
equal. The spike emitted simultaneously from each slit 
will be superimposed coherently at detector A, resulting 
in an output response of 4E\, where E0 is the field con- 
tribution from each slit taken separately. However, if de- 
tector B is moved sufficiently far from A and the radiation 
travel time from the two slits differs, say, by an amount 
greater than the spike width, then detector B will give a 
signal of 2EQ since the two pulses do not coherently su- 
perimpose at detector B. From the geometry the pulse 
width can be determined. For pulses ~ 100 ps-long, a slit 
separation of 25 cm with detectors located 1 m beyond 
the mask will do; the slit width is 3 mm to generate a 
broad diffraction pattern. 

Fig. 6 shows experimental data obtained from two de- 
tectors, positioned as shown in Fig. 5. The ratio of the 
amplitude of corresponding spikes is measured as a func- 
tion of the angle between the two detectors, keeping SA 

on the axis of symmetry. The movable detector is turned 
as it moves in such a way that the horn remains pointed 
at the point halfway between the two slit radiators; in this 
way the receiver radiation pattern will respond equally to 
power emitted from each slit. It is seen that the change of 
power ratio emitted in spikes is about a factor of two as 
the movable detector is moved through about 20°, and 
that the characteristic falloff point is roughly 10°. From 
the geometry we find a pulse width of the spike of roughly 
150 ps, which can be compared with the slippage distance 
- 7 cm, or 230 ps. taking a signal wavelength of 1.9 mm. 
The slippage distance is also the approximate coherence 
length of the FEL radiation. For comparison, the ratio of 
the averge power obtained from the detector is plotted as 
well, but this data (diamond points) is obtained from the 
nonspiking part of the FEL power pulse; this will show 
power falloff due to diffraction as well as the much longer 

FULL OVERLAP) 

DETECTORS RECORO: 

I   ff<tE,(t) + E2(t + ra)]
2> 

Fig. 5. Schematic of the two-slit interference experiment, showing the su- 

perposition of a short pulse of radiation emitted simultaneously from the 

two slits and observed bv two detectors. 
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Fig. 6. Experimental data for the ratio of spike power amplitude from the 

two detectors (upper curve) and the ratio of the average power (lower 

curve). 

coherence length of the laser, the latter depending on the 
cavity length. 

Fig. 7 is a photograph of the FEL power showing an 
unusual double-spike emission. From the photo, the spike 
separation is —1-2 ns, and from the rise of signal in be- 
tween the two spikes, one might surmise that the resolu- 
tion is excellent; in any event, a small fraction of the 
spacing. The two spikes are separated by a distance of 
between one-half and one unit of the undulator length; 
that is, by an amount which is larger than the synchrotron 
length but much less than the resonator length. 

If we calculate the radiation intensity that would cause 
a synchrotron period of roughly twice the spike width, we 
find that the spike maximum intensity is -300-400 
MW/crrr near the electron beam, or a peak power of 
~ 100 MW for the system. This corresponds to a net spike 
energy radiated -8-10 mJ, which can be compared with 
the amount of energy in the electron beam in a slippage 
distance of 7 cm: 25 mJ. This shows that the spike is an 
efficient converter of electron beam energy into radiation. 
The spike power is enhanced roughly a factor of ten over 
the average FEL power. 

The high-intensity and short pulse width of the spike 
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Fig. 7.  FEL power pulse showing an unusual double spike feature; the 
accelerator voltage shows appreciable droop here. 

make it an attractive feature of the FEL for particular ap- 
plications: however spiking requires further study and de- 
velopment of new techniques to render the spikes as re- 
producible features before these advantages will be useful. 
Direct observation of spiking behavior has been reported 
recently on 3-^m wavelength radiation emitted from the 
MKIII FEL at Stanford [10]. 
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Solitary Wave Spikes Emitted from a Microwave Free-Electron Laser 
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Narrow, high-power "spikes" can be emitted by a 24-GHz free-electron laser (FED. Spikes, ~450 
psec long, may occur randomly or in a sequence which is not the mode-locked period of the resonator. 
The slippage of the FEL is varied by changing the diameter of the drift tube. The slippage is zero when 
the electron axial speed is the same as the wave group velocity. Spiking was observed with and without 
slippage. Measurements of the FEL spectrum are reported and we compare the spike width with a 
solitary-wave theory. The experiment rules out the sideband instability or superradiance as a cause for 
this spiking. 

PACS numbers: 41.60.Cr 

When the free-electron laser (FEL) is operated under 
conditions of high power, it is possible that the emission 
can break up into narrow pulses of high-intensity radia- 
tion which are called "spikes." This feature has been ob- 
served in numerical simulations [1-3] as well as experi- 
ments [4,5] where the radiation field is high enough to 
make the synchrotron period shorter than the undulator 
length. While these observations relate to the nonlinear 
state of saturated power in an oscillator, narrow pulses of 
mode-locked radiation also have been observed by Jerby, 
Bekefi, and Wurtele [6] under conditions where the radi- 
ation field is still in the linear regime of exponential 
growth; these spikes may have been initiated by pulses in 
the electron beam current. A model has been proposed 
by Warren, Goldstein, and Newnam that connects the 
spiking to the sideband instability [3]; this instability has 
been studied [7,8] experimentally in a millimeter-wave 
FEL device at Columbia. The latter experiments were all 
conducted under conditions where there is finite "slip- 
page," which depends on the difference between the 
group velocity (vg) of light waves and the axial speed 
(t'n) of the electrons. Spikelike pulses of radiation are 
also believed to occur from superradiance, which itself re- 
quires slippage of the radiation  pulse off a pulse of 

bunched electrons in an FEL [9-12]. 
We report an experiment where the FEL can be 

operated at nearly zero slippage under conditions where 
the electron beam pulse is essentially infinitely long; our 
finding is that spiking persists. A model of the nonlinear 
state of the FEL has been developed by Cai and Bhatta- 
charjee [13] and Bonifacio, Maroli, and Dragan [14]; in 
the former work, it is shown that the radiation field 
satisfies a Ginzburg-Landau (GL) equation which has 
solitary-wave solutions, among them being singularities 
which resemble spikes and which we compare with our 
data. In this Letter we show by an experiment and a nu- 
merical study of the GL theory that spiking survives the 
zero-slippage condition where the sideband instability 
should become stable [15]. 

Our experiment was done using a Pulseline accelerator, 
which delivers a 150-nsec, 600-800-kV pulse to a diode 
(field emission cathode) immersed in a guiding field — 1 
T. The experiment is operated as a microwave FEL near 
24 GHz, using a bifilar helical undulator with period of 
4 cm. The FEL operates (Fig. 1) as either a 24-GHz 
amplifier using signal from a magnetron, or as an oscilla- 
tor (at high gain the device oscillates due to reflection at 
the end of the drift tube).  A spectrometer was used to 

To Magnetron (24GHz) 

Guiding   Field Solenoid 

Different dio. 
Drift tubes Vacuum 

IWindow 

~eTe c fr on~B eom" 
^/AW///^7^y<y/^^^^ 

JMicrowave 
-launcher 

A    (TE„, 
9mm 10) 

FIG. I. Experimental apparatus, showing how the bifilar undulator winding is positioned over the drift tube. The magnetron is 
used only for particular experiments described in the text; ordinarily the FEL is made to oscillate for a sufficiently large undulator 
field, > 0.8 kG, corresponding to an undulator parameter ~0.5 in the guide field of 0.95 T. 

© 1993 The American Physical Society 2403 



VOLUME 70, NUMBER 16 PHYSICAL REVIEW LETTERS 19 APRIL 1993 

monitor radiation from 19 to 35 GHz emitted from the 
FEL.  In order to change the slippage, we use drift tubes 
having different inside diameter.   The larger drift tube 
(i.d. 24 mm) is for "conventional" FEL operation with 
finite slippage at a beam energy of 620 kV, while zero 
slippage can be obtained at 22 GHz for a 710-kV beam 
with a drift tube i.d. of 17 mm. The larger drift tube had 
a ratio of electron parallel velocity to wave group velocity 
of 0.91 under operating conditions.  For a twenty-period 
undulator, this gives a slippage time —300 psec at 24 
GHz for the larger tube; however, in the smaller drift 
tube the slippage time varies from zero to —100 psec 
across the band of frequencies that we observe to be emit- 
ted. 

Calibration of the undulator magnetic field was done 
for each configuration, as the penetration of the field 
from the pulsed capacitor bank which powers the undula- 
tor depends on the diffusion of field through the stainless 
steel walls of the drift tube. The undulator has a 10-cm 
entry zone where the helical field gradually increases. 
The undulator is pulsed to produce a field of 0.9 kG, 
which causes a transverse beta of 0.22 (undulator param- 
eter, 0.5) in the guiding field. The microwave coupler is 
designed to launch a TE11 mode into the drift tube from 
the rectangular waveguide that connects to the magne- 
tron. The diode voltage of the accelerator is adjusted to 
amplify radiation at 24 GHz. Most of the data were tak- 
en with the FEL in an oscillator mode, with the magne- 
tron off. The FEL output signal lasts about 100 nsec and 

s 
o 
0. 

FIG. 2. Examples of spiking on the high power output of the 
FEL. (a) Operating near 24 GHz as an oscillator with a Bragg 
reflector at nearly zero slippage (710 kV, 17-mm drift tube); 
(b) oscillator with much larger slippage (620 kV, 24-mm drift 
tube). Spiking occurs from 4 to 13 nsec in (a), and from 0 to 
11 nsec in (b). Power scale is in arbitrary units. Note FEL 
power level in (a) is lower than in (b). These portions of the 
laser pulse are taken following saturation. 

reaches a power of approximately 10 MW. 
Figure 2 shows portions of two typical shots where 

spiking appears. The data were taken with a Tektronix 
SCD 5000 Transient Digitizer, which has a maximum ac- 
quisition rate of 200 GS/sec and an analog bandwidth of 
4.5 GHz. Data obtained from several shots permit a 
measurement of the spike FWHM, 450 ±100 psec. 
Spikes may occur singly with random spacing, or in a 
periodic array (as in Fig. 2) throughout the duration of 
the saturated FEL power pulse. The periodicity is not re- 
lated to the round trip travel time of radiation in the drift 
tube, which is 7 nsec. 

Spiking was observed under all conditions of operation, 
for near zero and finite slippage, for spectra which 
showed sidebands, and for spectra which showed more 
nearly coherent emission obtained by using a resonant 
reflector. Spikes are emitted from the oscillator even 
when a strong "seed" signal (-20 kW, 24 GHz) is in- 
jected into the system; this signal causes the oscillator to 
emit a much narrower band of frequencies centered on 24 
GHz. The average spike width was not found to depend 
on the size of the drift tube. 

The spectrum of the radiation was obtained with a 
grating spectrometer; the 24-GHz magnetron was used to 
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FIG. 3. Power spectrum (arbitrary units), (a) 24-mm i.d. 
drift tube FEL oscillator (K-620 kV); (b) 17-mm i.d. drift 
tube FEL oscillator (K-710 kV); (c) same as (b), but with a 
20-kW signal injected at 24 GHz; (d) same as (b), but with a 
Bragg reflector installed at the output of the FEL. (a) and (b) 
also show the single-pass unsaturated power gain (dashed 
curve), calculated using the code described in Ref. (81; this 
shows the spectral zone over which appreciable power output 
can occur. "Error bars" indicate the range over which the ex- 
perimental data fluctuate. 

2404 



VOLUME 70, NUMBER 16 PHYSICAL REVIEW LETTERS 19 APRIL 1993 

calibrate the wavelength scale. Several spectra are shown 
in Fig. 3:   3(a) is the output of the oscillator operated 
with a 24-mm drift tube (620 kV), while 3(b)-3(d) are 
spectra of the 17-mm drift tube (710 kV).  In Fig. 3(a) 
there appear what might be sidebands, which have about 
the  correct  displacement   from   the   24-GHz  carrier, 
— ± 15%, considering the synchrotron period and the 
slippage [8]. The carrier is identified by the beam energy 
for which the magnetron signal at 24 GHz shows max- 
imum gain.  In Fig. 3(b) we find the sidebands are much 
less prominent.   The gain spectrum becomes very wide 
when the "tangency" condition (i'|—r,) applies, as indi- 
cated by a numerical calculation of the single pass power 
gain in the small signal limit (dashed line).  In Fig. 3(c) 
a high-power "seed" signal is injected into the oscillator, 
and we find that the oscillation now occurs at the same 
frequency as the input, with no sidebands apparant (at 
tangency condition, the sideband instability is suppressed 
[15]).  Finally, in Fig. 3(d) we show the spectrum of the 
17-mm drift tube FEL oscillator under conditions when 
the output power is reflected by a 26-GHz Bragg reflector 
[16], showing a much more coherent [17] operation than 
in Fig. 3(b); there appear to be no sidebands of the type 
found in Fig. 3(a).   Spiking nevertheless has been ob- 
served under all conditions.   The detectors in the spec- 
trometer average over the spiking phenomena, and there- 
fore the spectra that we show here describe the FEL out- 
put in some "average" sense, so that a Fourier transform 
of these spectra would not necessarily result in a spike 
pulse. 

We now compare the observed spiking with the predic- 
tion of a solitary wave theory [13] applicable to our ex- 
periment. This theory represents the gain and dispersive 
behavior of the FEL signal by a Ginzburg-Landau equa- 
tion: 

-r— — ikQ\<i)Q)A — v.   —— 

-^(ai+ia2)^4+iß\A\2A. 
df 

(1) 

In the above, A represents the amplitude of the elec- 
tromagnetic wave, a| is the group velocity dispersion, a2 

is the gain dispersion, \0(co0) is the optimum eigenvalue 
of the signal growth at frequency a0, and ß is a complex 
coefficient which determines the signal saturation and is 
obtained by a WKB analysis of the reduced FEL equa- 
tions in Ref. [13]. Two types of analytic solutions were 
obtained for the solitary-wave type of pulse: a periodic 
array of very narrow spike singularities and a broader iso- 
lated spike [see Eqs. (17) and (16), respectively, of Ref. 
[13]]. In the case of our experiment, the first solution 
predicts spikes of FWHM —7 psec and spacing —22 
psec, which is too fast for our apparatus to record. The 
broader spike is predicted by the theory (see below) to 
have FWHM 7—330 psec, which compares with the ex- 
perimental measurement of FWHM  (450 ±100 psec). 

This broader spike solution has a power profile varying as 
~l/cosh2(1.76//D, which we have found to be an ac- 
ceptable representation of a typical observed spike in Fig. 
2(a). In Ref. [13], it was pointed out that the analytic 
solitary-wave solutions come in two families, but it is not 
possible to determine which class of solutions will actual- 
ly occur. This may depend on the initial conditions of the 
experiment, for example, irregularities of the electron 
beam current. 

We have programmed the solution of the GL equation 
to study the evolution of spikes from different initial con- 
ditions. The coefficients in Eq. (1) are determined using 
a numerical simulation [8] to obtain X(eo) (thus the 
waveguide and the beam filling factor are accounted for), 
and for the experimental data appropriate to Fig. 2(a), 
i'S/c-0.91, Im(A.0) -0.084 cm -i 

<*i ■2.2X10-23 sec/ 
cm , 02-7.2X 10 "24 sec/cm2 [the experimental value for 
ImO-o) is 0.05 cm "']. The beta (ßr -20 cm "', ßt -4.7 
cm ') is obtained from \(a>). If one injects a small am- 
plitude initial spike that resembles the analytic solution 
with the correct phase, it will grow to several MW inten- 
sity, maintaining a width of 330 psec throughout the 
growth as shown in Fig. 4(a). If one chooses an initial 
spike that has the correct amplitude profile, but not the 
correct phase, then as it grows and reaches saturation, it 

Tme    (200psec) 

FIG. 4. (a) Growth and saturation of a solitary pulse along 
the electron beam of the microwave FEL using a numerical 
solution of the GL equation; parameters are appropriate to the 
data shown in Fig. 2(a) and give a pulse 330 psec FWHM. (b) 
A group of spikes, 330 psec wide, spaced 800 psec apart, ob- 
tained from the GL equation, similar to those found in Fig. 2. 
The vertical scale is the same in (a) and (b) and the calculation 
extends to 75 cm. 
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will become broadened. Thus it is possible for certain ir- 
regularities of the excitation that satisfy the initial condi- 
tions to grow into spikes in accord with the analytical 
solution while others may not. The experiment also 
showed sequences of closely spaced spikes, which we 
simulated with a string of initial pulses each of which has 
the amplitude and phase of the exact solution of the GL 
equation. If the spacing of the spikes is a few FWHM 
times, each pulse evolves almost independently, maintain- 
ing its width. When the spacing is narrowed excessively, 
in deep saturation there appear additional pulses of 
FWHM —10 psec from the interference (our microwave 
detector cannot resolve such a short pulse). In Fig. 4(b), 
the spike spacing is 800 psec, as found in the data of Fig. 
2, but if the spacing is reduced to one FWHM, the indivi- 
dual spike feature disappears. 

We have found that the FEL has the capability to pro- 
duce narrow pulses of high-power radiation in both the 
linear as well as the nearly saturated regime, even in the 
case of almost zero slippage and very long electron pulse. 
Thus we rule out the sideband instability and superradi- 
ance in connection with the spiking we have observed. 
The Ginzburg-Landau equation model of the FEL shows 
that spike pulses that have amplitude and width which 
agree with our experimental observations can evolve. Al- 
though the model also predicts the existence of periodic 
spiking solutions, thus far we are unable to quantitatively 
account for the interpulse spacing observed experimental- 
ly. Injection of a single solitary pulse at the input of a 
traveling-wave FEL amplifier as described above would 
result in a solitary wave with interesting features. 

The authors acknowledge the help of Michael Cecere 
with the Transient Digitizer system, discussions with Pro- 
fessor A. Bhattacharjee, and the cooperation of Dr. Mary 
Potasek in connection with the program of the Ginzburg- 
Landau equation.   This research was supported by the 

ONR. 

Ill W. B. Colson and R. A. Freedman, Opt. Commun. 46, 37 
(1983). 

[2] D. C. Quimby, J. M. Slater, and J. P. Wilcoxon, IEEE J. 
Quantum Electron. 21, 979 (1985). 

[3] R. W. Warren, J. C. Goldstein, and B. E. Newnam, Nucl. 
Instrum. Methods Phys. Res., Sect. A 250, 19 (1986). 

[4] B. A. Richman, J. M. J. Madey, and E. Szarmes, Phys. 
Rev. Lett. 63, 1182 (1989). 

[5] J. W. Dodd and T. C. Marshall, IEEE Trans. Plasma Sei. 
18,447 (1990). 

[6] E. Jerby, G. Bekefi, and J. S. Wurtele, Nucl. Instrum. 
Methods Phys. Res., Sect. A 304, 107 (1991). 

[7] F. G. Yee, J. Masud, T. C. Marshall, and S. P. Schles- 
inger, Nucl. Instrum. Methods Phys.   Res., Sect. A 259, 
104(1986). 

[8] S. Y. Cai, A. Bhattacharjee, S. P. Chang, J. W. Dodd, 
and T. C. Marshall, Phys. Rev. A 40, 3127 (1989). 

[9] R. Bonifacio, C. Maroli, and N. Piovella, Opt. Commun. 
68,369 (1988). 

[10] W. M. Sharp et a/., Nucl. Instrum. Methods Phys. Res., 
Sect. A 285, 217 (1989); see also 296, 535 (1990). 

[11] S. Y. Cai, J. Cao, and A. Bhattacharjee, Phys. Rev. A 42, 
4120(1990). 

[12] G. T. Moore and N. Piovella, IEEE J. Quantum Electron. 
27,2522(1992). 

[13] S. Y. Cai and A. Bhattacharjee, Phys. Rev. A 43, 6934 
(1990. 

[14] R. Bonifacio, C. Maroli, and A. Dragan, Opt. Commun. 
76,353 (1990). 

[15] S. S. Yu et ai, Nucl. Instrum. Methods Phys. Res., Sect. 
A 259, 219(1987). 

[16] M. C. Wang, V. L. Granatstein, and R. A. Kehs, Appl. 
Phys. Lett. 48. 817 (1986). 

[17] B. G. Danly et a/., Phys. Fluids B 4, 2307 (1992). 

2406 



Hie 

Nuclear Instruments and Methods in Physics Research A 341 (1994) 265-268 
North-Holland 

NUCLEAR 
INSTRUMENTS 

& METHODS 
IN PHYSICS 
RESEARCH 
 Section A  

A solitary wave theory for spiking pulses emitted 
by a Raman free electron laser 

Li-Yi Lin, T.C. Marshall *, M.A. Cecere 
Department of Applied Physics, Columbia University, New York City 10027, USA 

We have extended a solitary wave theory for high power spike pulses emitted from a FEL by including the space charge wave 
and treating the radiation field in two dimensions so as to allow for the waveguide. In this manner we derive the "collective 
variables" equations which describe the physics of the Columbia Raman FEL. The refractive index of the electron beam and the 
saturation intensity of the radiation field are obtained from a WKB theory. It is shown that the nonlinear behavior of the radiation 
field can be modeled by the Ginzburg-Landau (GL) equation using coefficients which are obtained from the collective variables 
analysis. The GL equation has solitary wave solutions that have a spiking character, lasting a few hundred ps. We program the GL 
equation to study the spike evolution from different initial conditions: an isolated spike resembles a solitary wave solution of the 
GL equation and is compared with experiment. We have examined how spikes grow from "noisy" initial conditions in the signal 
field as well as fluctuations in the beam current. 

In four recent publications [1-4], we have reported 
on spiking radiation pulses that we have observed 
emitted from a Raman free electron laser operating at 
centimeter and millimeter wavelengths (see Table 1). 
These pulses of radiation, a few hundred ps in width, 
appear under conditions of high power saturated out- 
put, during "long-pulse" operation, either with or with- 
out slippage or sideband radiations. Spikes can be 
distinguished from the more nearly random fluctua- 
tions in signal amplitude which can be caused by the 
interaction of the various cavity longitudinal modes. 
Spiking output from FELs has also been studied using 
numerical models [5-7], and so we might regard this 
mode of operation of the FEL as perhaps typical. 
Spiking output may or may not be useful, depending 
on the intended application of the FEL. Our purpose 
in this paper is to present a radiation model for the 
FEL which has, as a result of certain conditions, pre- 
dicted solitary wave type spiking pulses of radiation. 

Our physical model for the FEL is that of an optical 
fiber, where signal propagation is characterized by 
parameters such as group velocity, dispersion, etc. The 
customary coupled electron-radiation equations for the 
FEL are replaced by a single radiation equation [8] 
which is a nonlinear Schrödinger equation with com- 

* Corresponding author. 

plex coefficients, commonly known as the Ginzburg- 
Landau [GL] equation: 

SA 
= i\0(u0)A -vg 

l — 
SA 

h-A 
J^i+a.J^r + ißlAl-A. (1) 

In this equation, A represents the amplitude of the 
electromagnetic wave, a, is the group velocity disper- 
sion, a2 is the gain dispersion, A0(ü>0) is the optimum 
eigenvalue for signal growth at frequency w0, and ß is 
a complex coefficient which determines the signal satu- 
ration and which is obtained by a WKB analysis of the 
reduced FEL equations in ref. [8]. The coefficients in 
the GL equation are obtained from a suitable model of 
the FEL, such as the "collective variable" equations 
[9]. The advantage of considering the GL equation is 
that the behaviour of the signal includes a range of 
frequencies unlike that obtained by the full set of FEL 
equations, which are accessible only via numerical 
study. In particular, the GL equation has two types of 
analytical solutions for a solitary-wave type of pulse: a 
periodic array of very narrow singularities and a 
broader, isolated type of spike. The theory has been 
compared with experimental results [4] obtained under 
conditions where there is no slippage or evidence for 
sideband instability, where nevertheless spiking pulses 
were observed. 

0168-9002/94/S07.00 © 1994 - Elsevier Science B.V. All rights reserved 
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Table I 
Operating parameters 

Undulator period (helical) 
Undulator length 
Electron pulse length 
Electron beam diameter 
Beam current density 
Drift tube (waveguide) diameter 
Electron beam energy 
Slippage time 
Wiggler parameter 
FEL wavelength 

4 cm 
80 cm 
150 ns 
6 mm 
- 2 kA/cm: 

24 mm    17 mm 
620 keV   720 keV 
~ 300 ps   0-60 ps 
-0.5 
~ 12.5 mm 

In what follows, we shall refine the collective vari- 
ables theory to include the effects of a waveguide 
(important for our experiment) as well as the space 
charge effects that occur for Raman operation. This 
will provide us with a more accurate model with which 
to predict the coefficients to be used in the GL equa- 
tion. We then present computations which start the 
signal from random noise, and demonstrate that spikes 
could possibly arise from irregularities in the electron 
beam current. 

The analysis begins by casting the 2-D FEL equa- 
tions for a Raman FEL with a helical undulator and no 
slippage [10] into the "collective variables" formulation 
[9]. The EM field is represented as a TEn mode. 
Defining: 

;e=<e-i<*;-*r-*))) 

y>< 22_2!£e-'(*/-i»,-i»] >, 
Yo 

A=ue1*', 
where i/rr is defined by the relation dtl/T/dz = kj.1 - 
y}/y\~) and y0 is the energy of the electron beam, we 
find the FEL equations become: 

dA 
— = i(8+p-ks)A + \gx, 
dz 

dx 
— = -i/iv. 

dv 
— = \fA- 2\hy0{y-xy0) + 2iSxy0 
dr 

-2if(x*A + A*x)x-\Bx, 

where 

&-k„{\-y;/yl),       f = kmajly\, 

« = <o;a,Af/27o.        h=ks(l+ai)/yl, 

F 

(2a) 

(2b) 

(2c) 

5 = tt);Asr0c, b   : 
P\R--1/K-)J,-{KR) 

Compared with the 1-D Compton FEL set of equa- 
tions, Eqs. (2) have the extra terms i(p -ks)A =k.A 

in Eq. (2a) and the \Bx term in (2c). These equations 
can be reduced to the third order equation for A: 

Ä-(\A-2iehy0)Ä + [2ehy0(A - ehyn - 5) + Bh]A 

-\h(fg + BA + 2eyQ8A)A 

2efh 
+ ~.— [-2A\A\2 + (ÄA* -A*A)\ 

(A-iAA)=0, (3) 

where the overdots denote d/dz and A = (<5 + p - kj. 
A small parameter e is introduced to tag all terms 
containing y0 which is a small quantity; initially, e is 
set to unity. Eq. (3) can be solved by a WKB analysis 
described in ref. [8]; from this analysis comes the 
unstable root A of the linear cubic equation as well as 
the saturation parameter ß: 

\=X0+ß\A\2, 

\l-A\i-Bh\Q+h(fg + BA) =0, 

ß"~ 
fh 

x{(A0--i)[2A0 + 4Re A0 + 4i_l H-25(A0+J)} 

x{2Im A0[2Im A0-i(3A0-J)] - 3A:
0 

+ 2A\0 + Bh}~ (4) 

The coefficients ax and a2 are obtained by examining 
the gain spectrum, A(a>). A comparison of the power 
growth in the Columbia FEL as predicted by the FEL 
equations, the collective variables equations, and the 
WKB analysis finds a small-signal linear power growth 
rate ~ 0.07/cm (compared with the experimental value 
of 0.06/cm) and saturation level in the ~ 5 MW range, 
again in accord with experiment; the WKB model does 
not show the detail of the synchrotron oscillations at 
saturation. 

As described in ref. [8], the WKB analysis then 
provides the coefficients for the GL equation. In ref. 
[4] it is described how a choice of these parameters 
consistent with our experiment will produce a solitary 
wave with width ~ 450 ps, which is the experimental 
result. In this paper, we report on two numerical 
results which have a bearing on why we see such 
spikes. To mimic the experimental signal startup, we 
choose input conditions for the GL equation to be 
random noise both in amplitude and in phase, and 
then follow the evolution of the growing signal along 
the electron beam. Fig. la shows the power evolution 
from random noise at z = 0 cm taking one random 
value every 32 ps; after a few cm distance, the narrow 
pulses emerge from noise, grow, and tend to stabilize. 
There is a region of growth where there is little change 
in spike width (Fig. lb); however, as full saturation is 
reached, the spike pulses become broadened or merge 
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Fig. 1. (a) View of the growth and saturation of a time-varying 
random noise signal input at z = 0 cm using the GL equation 
with parameters appropriate to the experiment [4]. (b) The 
time-dependent power signal observed at z = 45 cm. obtained 
from the data of (a), (c) Experimental FEL power output 
signal data showing features which are qualitatively similar to 

those in (b). Power scale is in arbitrary units in each case. 
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Fig. 2. Current (arbitrary units) drawn by a low inductance 
coaxial wire probe in the electron beam: the current pulse is 
150 ns long, but this shows only a 10 ns -'window". The 
average current is about 100 A (as determined by a Faraday 
cup). Note the three pulses of current between 6 and 8 ns. 

When the probe is out of beam, there is no noise level. 

ties in current may grow into spikes, we use a crude 
model of a small current pulse superimposed on an 
otherwise uniform current (Fig. 3). As the FEL interac- 
tion commences, a current pulse will result in a signal 
pulse, since the gain depends on the beam density. We 
first obtain the power and phase profile caused by the 
current pulse at a short distance (20 cm) into the 
undulator, using FEL equations code. Further along 
the undulator, a larger power and phase variation 
across the signal pulse can be obtained, and it resem- 
bles the top half of a GL solitary wave solution. Then 
this is fed into the GL code as an initial pulse, and in 
Fig. 4 we show how a pulse having FWHM ~ 200 ps is 
produced. The width of the pulse enlarges very slowly 
with propagation, and resembles a solitary wave. This 
suggests that solitary wave pulses might be prepared in 
the FEL by causing pulses of approximately the same 
width to appear on the electron beam current. This can 
be done, for example, by irradiating the cathode with a 

when two pulses are close enough. By repeating the 
run several times with different initial noise, we find on 
the average that the spike width is ~ 300 ps from the 
code. If the amplitude (only) of the input is random 
noise, but not the phase, the initial pulses merely 
spread out. Fig. lc shows experimental data of the 
spiking for comparison. Much of the spiking we ob- 
serve is perhaps characteristic of incompletely satu- 
rated signal growth, but it is possible that a noise 
fluctuation may make a pulse that by chance is a 
solitary wave. 

On the other hand, it is likely that startup of the 
FEL signal is dependent upon rapid variations in the 
electron current. The latter, as shown by the experi- 
mental example Fig. 2, is far from constant, and indeed 
shows some narrow pulse features where the current 
fluctuates by a factor ~ 2 which can initiate signal 
fluctuations [11]. To understand how these irregulari- 

r 
z=20cm 
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1 i /           \ - ...-•**                        "■■■■-. 

ns i .-•"""                                              """-. . •^*0*~~*^-~~.                       *" 
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Fig. 3. A model of a current fluctuation: dashed line is a 
model current pulse, dotted line is the resulting FEL power 
and signal phase variation (solid line), in arbitrary units. 
Power and signal phase are calculated using the standard FEL 
equations which are solved numerically to generate the power 
and phase at z = 20 cm downstream along the electron beam. 

Time is in arbitrary units. 

IV. THEORY 
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T™e  x400psec 

Fig. 4. Evolution of a small signal pulse. FWHM   ~ 180 ps, 
obtained from Fig. 3 data input at z = 50 cm and followed 

downstream from there into saturation. 

short pulse of intense light, e.g. a CO: laser pulse 
incident upon a cold field-emitting cathode. In this 
way, single, powerful solitary pulses may be produced. 

We briefly summarize here our experiments with 
spiking as observed using a tapered undulator. Actu- 
ally, two undulators were used: a constant period (1.7 
cm) undulator, and a "hybrid" undulator consisting of 
a constant period (1.7 cm) section 30 cm in length 
followed by a tapered zone 46 cm in length were the 
period uniformly decreases to 1.4 cm at the end. Ex- 
periments were done with both undulators, in an oscil- 
lator configuration, using a 750 kV electron beam 
pulse. Spiking pulses of width 490 ± 70 ps were ob- 
served from the tapered undulator FEL, whereas the 
spiking pulses obtained from the constant period undu- 
lator were 410 ± 60 ps in length for the same condi- 
tions (a Tektronix SCD 5000 Transient Digitizer was 
used for these measurements and the current pulses). 
The wavelength radiated was  > 2 mm. Thus tapering 

does not "destroy"' the spiking phenomenon. Calcula- 
tions which adapt the GL theory to the tapered undu- 
lator configuration are currently being done at 
Columbia. 
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Experimental test of the inverse free-electron-laser accelerator principle 

Iddo Wernick and T. C. Marshall 
Department of Applied Physics, Columbia University, New York, New York 10027 

(Received 12 February 1992) 

A free-electron laser was configured as an autoaccelerator to test the principle of accelerating elec- 
trons by stimulated absorption of radiation (A.= 1.65 mm) by an electron beam (750 kV) traversing an un- 
dulator. Radiation is produced in the first section of a constant period undulator (/„,, = 1.43 cm) and 
then absorbed (-40%) in a second undulator, having a tapered period (lw2= 1.8-2.25 cm), which results 
in the acceleration of a subgroup (~ 9%) of electrons to ~ 1 MeV. 

PACS number(s): 41.60.Cr, 41.75.Ht, 29.17.+W 

The principle of using free-electron-laser (FED physics 
to accelerate electrons was described by Palmer [1] in 
1972; however, despite the extensive development of the 
FEL there has been no demonstration of the stimulated 
absorption of a laser pulse accompanied by acceleration 
of a group of electrons while the electron beam is travers- 
ing an undulator [inverse FEL (IFEL)]. The idea has 
been reexamined in more detail [2-4] and appears to 
offer some promise to achieve an acceleration gradient 
~ 1 MV/cm in linear accelerators. In the electron rest 
frame, the magnetostatic field of the undulator is 
transformed into an electromagnetic wave which beats 
with the laser; acceleration occurs by keeping the phase 
of the electrons constant, with respect to the beat wave, 
by varying the undulator period and/or magnetic field as 
the particle energy increases. We have devised a relative- 
ly simple experiment, done at the Columbia University 
FEL facility [5], which demonstrates that acceleration 
does occur. 

The Columbia University FEL operates at a wave- 
length of 1.6 mm and produces about 5 MW from a 750- 
kV electron beam. As there is no powerful laser source at 
this wavelength, we have configured the experiment as an 
"autoaccelerator" (IFELA) in which a subgroup of elec- 
trons is accelerated by the "inverse FEL" mechanism at 
the expense of the average energy of the entire beam. 
This is done by separating the undulator into two sec- 
tions.   The first section (Fig. 1) together with a pair of 
75% reflecting coaxial mirrors develops FEL radiation 
which grows from noise to saturated intensity and causes 
a bunching of the electrons.  These particles then enter 
the second section of the undulator where the period is 
increased and then tapered along the axis so that a sub- 
group of electrons is accelerated as stimulated absorption 
of the wave occurs. We report measurements of this non- 
linear absorption together with the electron energy spec- 
trum. The accelerator section acts as a load for the oscil- 
lator, but its absorption is not high enough to prevent os- 
cillation of the entire system. 

Table I summarizes the parameters of the IFELA ex- 
periment. The undulator is a bifilar helical winding 
which provides a transverse field of order 600 G follow- 
ing an adiabatic entry region. The beam is guided and fo- 
cused along the drift tube by a uniform solenoidal field 

~ 1 T which causes "group I" orbits [6]. The FEL power 
examined by a grating spectrometer shows a carrier 
wavelength of 1.6 mm together with a pair of sidebands 
which carry about one-third of the total power; it was 
found that only the carrier was absorbed by the accelera- 
tion process [7]. The downstream mirror is polished 
graphite with a small hole on its axis followed by a colli- 
mator which forms the objective of the electron-beam op- 
tics. A focusing solenoid guides the electrons beyond the 
fringe field of the solenoid. A dipole field using triangu- 
lar polefaces deflects the beam and disperses the electrons 
onto a quartz viewing plate where the impact causes sub- 
stantial Cerenkov light [8] (the quartz is painted with an 
opaque graphite film on the vacuum side). The light from 
the energetic electrons is directed to two lead-shielded 
photomultipliers located in a shielded room with the oth- 
er electronics. The magnetic spectrometer is calibrated 
by using the electron beam with no undulator. The use of 
two photocells permits one photocell to monitor the prin- 
cipal group near the injection energy while the other 
scans the energy channels for the accelerated electrons. 

The undulator in the IFELA section is designed using 
a numerical model to choose the appropriate field and 
taper. We use a set of equations [5] that models the elec- 
tron motion in one dimension (ID) along a single pass 
through the system and a self-consistent set of 2D field 
equations. A "Raman" term which accounts for the Ion- 

focussing magnet 

analyzer 
magnet 

cathode 

FEL 
>— radiation 

detector 

FEL 

collimatorJ 

-electron beam 

IFELA 

FIG. 1. Schematic of the IFELA and the magnetic spectrom- 
eter. Electron emission occurs from a cold graphite cathode in 
a field-immersed diode, the beam is formed by a 4-mm-diam 
aperture in a graphite anode, which also serves as the upstream 
mirror of the resonator. 
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TABLE I. Operating conditions of the Columbia University 
IFELA. 

Beam energy 
Beam diameter 
Beam current 
Pulse length 
Drift tube diameter 
Undulator:   first section 

Undulator:   second section 

750-800 kV 
4 mm 
150 A 
150 nsec 
11 mm 
/„i = 1.4 cm 
5^=600 G 
length = 40 cm 
/„,2=1.8-2.25-cm 

1   dl, 
taper 

/„   dz 
5^=400 G 
length =37.5 cm 

-; — =0.0067 cm" 

gitudinal space-charge electric field from the electron 
bunches is included and is necessary to obtain the correct 
growth rate in the FEL section and the correct interac- 
tion in the IFELA section. The electron beam in the ex- 
periment has normalized parallel momentum spread 
~ 1% [9], and is represented in the numerical study as a 
"cold" beam, since the trapping width Ay/y^y^ a 
where as and aw are the normalized vector potentials of 
the signal and undulator fields, is much larger than 1%. 

The magnetic field of the FEL undulator section was 
chosen so that the power would grow roughly a factor of 
25 in 40 cm. This gain will sustain oscillation and results 
in a signal which reaches power saturation at the point 
where the electrons enter the IFELA section.   The sa- 
turated power intensity on the beam axis, ~ 10 MW/cm2, 
is consistent with the power output from an FEL oscilla- 
tor device very similar to this one [10].  It is found nu- 
merically that the wave amplitude is reduced by one-half 
as it reaches the end of the IFELA undulator as a sub- 
group of the trapped electrons is accelerated to ~ 1 MV. 
The code includes no slippage and therefore does not ac- 
count for sideband radiation; hence the measured absorp- 
tion of the FEL power by the accelerator module will be 
less than the model predicts.  The taper of the undulator 
which optimizes the absorption and acceleration is found 
through trial and error of the numerical study and corre- 
sponds to an acceleration gradient of ~ 7 kV/cm in this 
test   experiment.    The   taper   is   used   to   generate   a 
variable-period helix which is mapped onto a section of 
phenolic tube and then cut to specification "by hand." 
Measurements of the actual undulator-period taper and 
magnetic-field taper are then incorporated into the code 
to simulate the actual experimental situation.  Once the 
taper is chosen, a series of simulations show that the ac- 
celeration is not very sensitive to variation in FEL power 
or undulator field, however, increasing the power input to 
the IFELA section will accelerate more electrons.  The 
field in the IFELA undulator can be varied independently 
of the FEL undulator; both are powered by a capacitor 
bank discharge synchronized to the accelerator timing 
system. 

A set of representative data is shown in Fig. 2. Shots 
are selected for a relatively flat diode voltage history, 
with electron energy near resonance. A determining sig- 

(a) 

(c) 

FIG. 2. Representative signals obtained in the experiment. 
(a) Accelerator voltage, -800 kV maximum; (b) signal from 
photocell monitoring 1-MV electrons, showing a burst of elec- 
trons at middle of trace; (c) FEL power transmitted through the 
IFEL stage, showing absorption in middle of trace; 10 nsec/div, 
horizontal scale. 

nature as the electron-beam energy reaches the design 
value is a decrease of transmitted FEL power accom- 
panied by an increase of light signal in the photomulti- 
pliers which respond to the accelerated electrons. The 
energy bins are separated by the resolution of the 
electron-beam optics. Background light, obtained from 
operation of the apparatus with zero undulator field, is 
subtracted from the signal. The transmitted FEL power 
is monitored by a Schottky-barrier diode detector located 
along the beam axis. It is found that the fraction of 
power absorbed does not depend sensitively upon the 
power level itself.  This behavior is to be expected from 
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FIG. 3. (a) Numerical result showing growth of FEL signal 
(initial intensity 0.3 MW/cm2) and attenuation in the IFELA 
section (begins at z =37.5 cm). Parameters of simulation taken 
from Table I. (b) Radiation transmitted through the IFELA 
section as a function of initial electron-beam energy. Error bars 
indicate standard deviation of the data. 
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FIG. 4. Measured electron energy spectrum (solid points); 
electron energy spectrum obtained from simulation, at the exit 
from the IFELA (solid line); electron energy spectrum obtained 
from simulation, at entry to the IFELA section (dashed line). 
The dotted vertical line denotes the injection energy. 

the model, which shows that increases in power absorbed 
result in more accelerated electrons but not necessarily 
higher electron energy. 

Figure 3(a) displays results from a numerical simula- 
tion of the experiment showing the growth of the FEL 
signal, followed by the attenuation of the wave in the ac- 
celerator section. Figure 3(b) shows experimental data 
giving the FEL power transmitted through the accelera- 
tor section. This shows that there is a reduction of emit- 
ted power by -40% in the vicinity of the resonant ener- 
gy of the design. By reducing the undulator field in the 
accelerator section to 250 G, the amount of observed ab- 
sorption decreases to about 25% of the incident power. 
The study of the FEL spectrum [7] shows that the side- 
bands of the FEL power spectrum are not absorbed by 
the accelerator to a measurable amount, and therefore 
the reduction of the incident carrier intensity (-75%) in- 
dicated in the numerical simulation is larger than would 
be obtained if the sideband power is included in the mea- 
surement, as was the case. 

Figure 4 shows the measured electron energy spec- 
trum. The data are compared with the numerical simula- 

tion, run according to the experimental conditions. The 
computed spectrum is processed so that the ordinate cor- 
responds to the number of simulation electrons contained 
in a bin having the same width as the experimental bin. 
The relative number of electrons accelerated and the ac- 
celeration energy are in good agreement with the numeri- 
cal model. According to numerical simulation the small- 
er peak which occurs at 7 a 2.2 does not result form the 
acceleration process. For comparison, the dashed line on 
Fig. 4 shows the electron spectrum computed (but not ob- 
served) at the end of the FEL section only; one notes 
there is a rapid cutoff of electrons having energy in excess 
of 7=2.7, which is well below the energy of the ac- 
celerated group. Thus electrons at ~ 1 MV have energy 
beyond the broadened distribution which results from the 
bunching and trapping of electrons from the FEL in- 
teraction. Electrons above the injection energy in FELs 
have been observed [11,12], however they are not "ac- 
celerated" by the IFEL mechanism. The number of ac- 
celerated electrons is about 9% of the total number, as 
can be estimated from Fig. 4. The ratio of the power re- 
quired to accelerate these electrons to the overall power 
of the electron beam is about 3%, which is less than the 
efficiency of the FEL (4-6 %). 

In an actual IFEL where the radiation is supplied by 
an external laser, the undulator field can be considerably 
larger (roughly a factor of ten greater than in our experi- 
ment) and the intensity of the laser wave can be higher by 
perhaps a factor of a thousand, taking a 10.6-/xm laser 
wavelength as an example. Then our observed accelera- 
tion gradient ~7 kV/cm would scale up by a factor of 
— 100 for such a device. Techniques exist to control 
synchrotron-radiation losses which are no longer negligi- 
ble at high energy [3]. Our success with the experiment 
and its interpretation suggests that the IFEL is a promis- 
ing technology for an "advanced accelerator" demonstra- 
tion. 
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Enhanced harmonic emission from a "complex" undulator 

Yung-Ping Chou and T.C. Marshall 
Department of Applied Physics. Columbia Unirersity. New York. NY 10027, USA 

The traditional scheme for generating harmonic emission from FELs requires a large IK > 1) undulator field to cause a sizable 
«roth-oider axial modulation in the electron trajectory. We propose a different concept based on the observation that the electron 
bunching m the nonlinear state has various harmonics. These bunches can be coupled into growing harmonic radiation fields using 
appropriately phased sections of undulators. An example is to use a right-polarized helical undulator in conjunction with sections 
of a Ieft-Polar,zed helical undulator; the phasing, field strength, and section length of the left-polarized elements can be optimized 
tor a given harmonic. The two undulators can have concentric windings and several sections can be used. The first left-polarized 
element is located where the fundamental radiation is intense but not fully saturated, so the nonlinear bunching is sustained 
without the fundamental depriving the electrons of most of their free energy. Although the overall undulator is more'complex it is 
not difficult to build and operates at low field (K - 0.3). We will present numerical studies illustrating the potential for harmonic 
generation using our millimeter wavelength FEL facility. 

1. Introduction 

The motivation for developing harmonic radiations 
in an FEL device is. among others, to secure shorter 
wavelength for a given energy electron beam. This is of 
great advantage for FELs which operate with energy 
less than 1 MV, where one might wish to generate 
radiations at 0.5-1.0 mm wavelength for the purpose of 
electron cyclotron heating of Tokamak fusion devices. 
A reduction of energy by a factor of two or more would 
permit a much less expensive technology to be used for 
the production of CW FEL energy. 

The standard theory of harmonic generation in an 
FEL is described by Davidson [1] and harmonic radia- 
tion was observed in experiments by Bamford [2] and 
Warren [3]. An electron beam passing through a strong, 
linearly polarized undulator field (aw>1.0) experi- 
ences a significant longitudinal velocity modulation and, 
hence, excites growing harmonic radiation at odd har- 
monics. However, use of large aw tends to defeat the 
purpose of producing shorter-wavelength radiations 
since it causes an increase of FEL wavelength, as well 
as a broader FEL gain spectrum. 

We have therefore considered how one might ob- 
tain appreciable FEL power at the second or third 
harmonic using aw « 1.0. Such a weak undulator field 
cannot cause strong harmonic electron motion, there- 
fore most of the available electron energy flows into 
the fundamental and harmonic radiations never grow 
beyond threshold in an oscillator. Thus one must sup- 
press not only the radiation growth at unwanted har- 
monics but also at the fundamental. One approach 

described by LANL [3] is the "compound" undulator. 
where different windings are arranged longitudinally so 
that only one prescribed harmonic will experience 
growth throughout the entire device. 

It has been observed [2.4] that an FEL oscillator 
will emit harmonic radiation, although the level is 
orders of magnitude less than the fundamental. This 
phenomenon is due to the harmonic currents of the 
bunched electron beam which occur in the nonlinear 
state. The harmonic power remains small because the 
undulator provides no higher harmonic magnetic fields 
and so it dephases the harmonic emissions. The energy 
flow from the fundamental to the harmonic is quite 
small. These points were established by others [2,4] but 
we present in fig. la our own numerical computation 
for reference, using parameters appropriate for the 
Columbia FEL. When the growth of the fundamental 
saturates, the level of the harmonic radiation is several 
orders of magnitude lower. At millimeter wavelengths, 
the harmonics are too weak to detect. 

In order to convert the energy of the fundamental 
radiation into harmonics, it is necessary to stop the 
growth of the fundamental short of saturation. We do 
this in the following manner: the fundamental is grown 
from noise or a small signal in a length of helical 
undulator with say right-hand helicity. At a suitable 
point, the helicity will switch to left-handedness. but 
with the same period. The remainder of the undulator 
will consist of short sections 'Tnacroperiods" each of a 
few periods arranged with alternating helicity. There is 
also the possibility of introducing a jump of winding 
phase at each macroperiod in order to optimize the 

0168-9002/92/S05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 
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Fig. 1. (a) The fundamental, the second, and the third har- 
monic power in a conventional helical FEL amplifier: u„ = 0.3. 
\„ = 1.5 cm. y„ = 2.17 (600 keV). and A, = 1.81 mm. (b) The 
harmonic components of the electron bunching. <e""*>, m = 1. 

2. 3: under the same conditions as (a). 

conversion to higher harmonic radiations. This last 
point has been noted by others [5]. We find that an 
improved level of harmonic power can be generated, 
especially at the second harmonic. Unlike other har- 
monic schemes, the undulator field remains "weak'": 
aw « 1. and we consider Raman FEL operation [6]. 

2. Theory 

We now construct a model for the harmonic genera- 
tion of an FEL. The normalized vector potential a^ of 
the undulator field can be most generally represented 
by 

«,= -[«i-f cos k^z + azy sm(kwz+ß)] 

= -±[a(x + r]y) ~ c.c]. 

where a=n,e'*--" and 77 ^■az/a] e"0"77'2'. The field 
is one-dimensional since the electron beam is on the 
axis of the undulator. By changing the values of 77 and 
ß. this form of undulator field allows various field 
structures. Two limiting cases are: 

- helical undulator: 77 = -i. ß = 0. 
- linear undulator: 7; = 0. 
We take the following form of the vector potential: 

",(-• 0= EK,-fCOs(mtf+ (/>,„) 

-ä,„y sin (mill + ib,„ - ß)] 

= ?E[(«,„e * + c.c.)i 

■+-(<<„ 

where   ib and = £,z - a)j, 
"'' The following assumptions are used to 

simplify the problem: the complex functions u m. Um 

depend on z only (one-dimensional, nonslippage): um 

and Tim are slow functions of r (eikonal): no wave- 
guide: no guide field. 

To obtain dimensionless equations, we normalize r 
to l/kw and w„ to kvc. The dynamical variables of an 
electron are the energy. yJ  and  the phase. Jir The 
equations advancing these variables are: 

d 
rv 

-y,ß:, 
!>(</,„ ■ - c.c. 

>E7(<e-'M>e"* -c.c.) 

dz 
•<!>,= 

-yf 
l + iRe(aaw) 

L(U,„ ■ c.c.) 

(1) 

C-) 

The first term on the right-hand side of eq. (1) is the 
ponderomotive wave. The second term is due to space 
charge. The wave equations of the mth harmonic field. 
u,„ and (7,„, are: 

— u,„ = ieaiß,,- 
az 

Re(a) 

*.-r 

\eioßu- 
Re( 77a) /e 

0.-7 

(3) 

(4) 

where di, = k^z - w-(z. C,l r{z. :;) = Ct + jj dz'/r. . 
7 is the time for ;'th electron with initial time C, to 
arrive at ;. aw = (I -r r]2)a ~ (1 + | 771 2)a". e = 
(o)p/w):. and U„, = Rc(a)u„, -f Rc( »ja)iJ„,. 

There is a conservation law of energy from these 
equations. 

[Y,mZ{ l«„,l:+ l"ml:) +ße(y) = constant. 
in 

which can be used to check the accuracy of computa- 
tion. A Fourier analysis of the electron distribution in 
the nonlinear state in an FEL shows the existence of 
various harmonics (fig. lb), and the induced harmonic 
current will produce harmonic radiation. 

VII. FEL THEORY 
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We now analyze the growth of harmonic radiation 
in a conventional helical undulator. A phcnomcnologi- 
cal form. H, =an cKz. for the growing fundamental is 
assumed: then we calculate the electron bunching 
caused by the fundamental and incorporate this into 
the harmonic wave equation. The cqs. (l)-(4) arc re- 
duced to simpler forms by setting 17 = -i. ß = 0 and 
^.„^„and y = y„(l + Sy,). Sy, « 1: 

d w . . 
_^._ __(!_5l,y)[i +fl: _(„„, C"'TC.C.)]. 

lüJ 

d; «T,: 

- i — 

and 

d Soja* 
— »,„ = '  
d-" 7,,'" 

-( 1 -5y,)(a«l c"* -c.c.) 

((c-'^e"* -C.C.). 

(<e-'""">-<ßy e-'""1)). 

(?) 

(6) 

(7) 

Assume the electron phase. i!ir is composed of two 
parts. (//, = i/»„, + tA|,. li'n, coming from the modulation 
of the undulator field and d/u from bunching. Since tlit, 
and i/r, are of different order, we may first write down 
the equation for i/<0, from cq. (5): 

d_- •V,- "^T:!1 "*""»)■ 

And the solution is tfr,,,. = £„, — fc. where /■> = 
(a)/2y,7)(l -r «;,). and f,,, is the initial phase. The 
equation for ifr, ■ is: 

— <bh=ba-y, + — (a«, c"*"' + c.c.). (8) 
^ - -yn 

For a Raman FEL where «^ is small, the equation for 
Sy, becomes: 

d: 
8y = -i (<C'"*> C'*' c.c). 

The ensemble averaged term on the right-hand side 
can be obtained from cq. (7) with m = 1: 

<e-.*>=_il!i_J.. 
ecoa 

Solving for Sy: and maintaining cK: » 1 we obtain: 

Kit,        1       . 
5y-' = " 2T~ 7T-TI   A' cos ( J- - i",) 

-J sin(J;-t„,)] 

-cos(t„,-/5.-). 

Inserting <$y, into eq. (8). the solution of (//,, is: 

^'1/ = ~ 77^"" 1(0 c^'1" T c.c 

where J = /J ■ 

After putting the newly solved t/r,,,. d/lr and 5y on 
the right-hand side of the second-harmonic wave equa- 
tion, wc find that the linear terms vanish after being 
ensemble averaged (therefore, the second harmonic 
radiation amplitude is one order smaller than the fun- 
damental). What remains is: 

d ew b-   1   / K 

dz   -     y„ A': al \ b 

Thus the second harmonic has a growth which scales as 
c-*\ but the term. ea«\ dephascs the growth, and 
hence it: does not reach a significant level in a conven- 
tional helical undulator. But the other term. K/b. 
which is due to the space-charge effect (Raman-type 
operation), does not dephase the resonance and helps 
maintain the second harmonic signal. Thus it is easier 
to excite harmonic radiation in a Raman FEL. 

The above analysis shows the main difficulty of 
producing harmonic radiation in-a simple helical undu- 
lator is the dephasing term coming from the undulator 
field configuration. If we are able to interfere with the 
oscillation of this term, even through a small distance, 
the high linear growth rate at the harmonic might give 
rise to appreciable harmonic power. This motivates the 
idea of a complex undulator. the first part of which is a 
conventional helical undulator of length shorter than 
that required for saturation of the fundamental. In this 
way wc promote appreciable bunching of the beam. 
The second part of the undulator is composed of a 
series of shorter sections with alternating helicities. 
which will suppress further growth of the fundamental 
and allow the remaining free energy of the electrons to 
flow into the harmonic fields. 

3. Simulation 

The model for numerical simulation is the set of 
FEL cqs. (l)-(4). We have investigated electron energy 
from 600-800 kcV. and undulator strength a„ from 
0.3-1.0. choosing different complex undulator field 
structures. The undulator period is set at 1.5 cm. the 
beam current density. 1600 A/cm:. and the overall 
undulator length. 120 cm. We explored the first three 
harmonics in most examples: the fourth and fifth har- 
monics were observed in a few cases, but their power 
was rather small. 

Fig. la shows the harmonic emission in a conven- 
tional helical undulator. The power of the second and 
the third harmonic is small and irregular, unlike the 
case of a linear undulator where only odd harmonics 
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are excited: the second harmonic power is always one 
order of magnitude greater than that of the third. The 
low harmonic power is due to the lack of a zeroth-ordcr 
longitudinal modulation in electron motion in the heli- 
cal undulator field. Increasing the pump strength can 
increase the harmonic power but does not stabilize the 
output power. 

Figs. 2a and 2b show the harmonic generation at 
different beam energy (600 and 790 keV) in an undula- 
tor where the first "half is a helical winding and the 
second "half is composed of small sections of alter- 
nating hclicity, each having three periods. Figs. 3a and 
3b are harmonic power curves in an undulator where 
the first "half is a helical winding and the second 
"half' is a sequence of lincar-hclical-lincar-helical 
fields. In the mathematical model, the drastic change 
of undulator field is done by changing the relative 
phase among the shorter sections in the second portion 

0.0      20.0     40.0     60.0     80.0    100.0    120.0   1400 
Z   (cm) 

20.0   140.0 

0.0       20.0     40.0     60.0     80.0     100.0    120.0   140.0 
Z (cm) 

40.0     60.0     80.0    100.0 
Z (cm) 

Fig. 3. (a) The fundamental, the second, and the third har- 
monic power in a "complex" undulator field (linear-helical- 
linear-helical... in the second half, starting at 23 cm); u„ = 
0.3. A„ = 1.5 cm. y„ = 2.17 (600 keV). A„ = 1.81 mm. macro- 
period of the second half is 3AW. (b) The first three harmonic 
power curves in the same indulator field, but with different 

electron energy. y„ = 2.55 (790 keV). and A,-1.34 mm. 

0.0       20.0     40.0     60.0     80.0    100.0    120.0   140.0 
Z (cm) 

Fig. 2. (a) The fundamental, the second, and the third har- 
monic power in a "complex" undulator field (alternating 
helicity in the second half, starting at 23 cm): <;u =0.3. \ = 
1.5 cm. y„ = 2.17 (MX) keV). Av= 1.81 mm. macro-period! of 
the second half is 3A„. (b) The first three harmonic power 
curves in the same undulator. but with different electron 

energy. y„ = 2.55 (790 keV). and A, = 1.34 mm. 

of the undulator. The harmonic power, especially the 
second, is significantly increased (by two orders of 
magnitude) in the second "half of the undulator. 
Meanwhile, the fundamental radiation decreases, which 
means that some of the fundamental wave energy has 
flowed into the higher harmonics. More important, the 
harmonic power is not only increased but also stabi- 
lized; this makes possible the buildup of the harmonic 
power in an oscillator. 

We found that changing the relative phase shift 
among the small sections in the second part of the 
undulator helps optimize the harmonic emission, but it 
does not change the power drastically. Also, the opti- 
mal structure of the undulator field depends on the 
injection energy of the electron beam. It is essential to 
insure the stability of electron trajectories: for the 
cases described here, the electrons are well-confined in 
the beam, even in the presence of a guide field - 1 T. 

VII. FEL THEORY 
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4. Conclusion 
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References 

To sum up the results from the simulation show 
that harmonic power output can be improved, using a 
""complex" undulator. especially at twice the funda- 
mental frequency. If the fundamental power is about I 
MW. we find the second harmonic power is about 10 
KW. while the third is one order of magnitude smaller 
than the second, measured at the end of a single-pass 
FEL amplifier. 
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A Free Electron Laser Experiment 
on "Angular Steering" 

M. Cecere and T. C. Marshall 

Abstract— A paper by Jerby [1] has discussed a number 
of mechanisms whereby FEL radiation may be directed elec- 
tronically into different radiation patterns. We have devised an 
experiment [2] to test this concept using the Columbia microwave 
FEL, which amplifies radiation at 24 GHZ to a level <1 MW. A 4 
mm dia. electron beam (580 kV) is propagated in a guiding field 
of 0.8T inside an overmoded 24 mm dia. cylindrical waveguide. 
A TEH mode is grown in a 33 cm long first undulator section 
(period 3.36 cm), and upon entering the following undulator 
section (period 2.26 cm, length 40 cm), the electron bunches 
convert to TM11 radiation which is further amplified. The far- 
field pattern of the TM11 emitted power is distinct from the TEH 
pattern. Numerical and experimental studies are described in this 
paper showing the resulting radiation pattern. 

I. INTRODUCTION 

A PAPER by Jerby [1] has described a number of ways 
in which the power radiated by a Free Electron Laser 

(FEL) can be cast in different directions by electronic means. 
This is done by controlling the phasing of the bunches, or by 
coupling to different waveguide modes which have off-axis 
radiation patterns. His analysis treated the FEL in the "linear" 
regime; however, operation of the device typically involves 
saturated output, and so it is of interest to test this concept in 
the laboratory, as well as by numerical study. In particular, our 
work considers the particular application which he refers to as 
"angular steering," which we test in our microwave FEL. The 
electron beam is injected into a "buncher" undulator, which is 
followed immediately by a "radiator" undulator. 

Conceptually, the technique can be understood as follows 
(see Fig. 1). In an FEL which uses a constant period heli- 
cal undulator and a smooth-bore cylindrical waveguide, the 
dominant interaction occurs when the "beam line" 

u = {kz+kw)ßllC-wp/j (1) 

intersects the "waveguide line," usually the circular TEH 
mode 

LJ2 = c2(k2
± + k2

s) = ky (2) 

as illustrated in the lower curve; in (1) we note the "Raman 
Shift" from the plasma frequency of the electrons. Here, kz 

is the axial wavenumber of the radiation; kw = 27r/(undulator 
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Fig. 1.    Sketch of a dispersion plot, showing intersection (intersection points) 
of waveguide curves (parabolas) and the electron beam wave lines. 

period, \w); uj is the circular frequency; k± is the transverse 
waveguide wavenumber; ßn is the ratio of the axial component 
of electron speed to the speed of light, c; and uip is the 
plasma frequency. The TEH radiation pattern is such that 
maximum power is radiated on the axis (Fig. 2(a)). We now 
add a refinement to this simple affair. Suppose the undulator 
were to be made of two sections, the first section having longer 
period than the second section. As the electron stream enters 
the first section of undulator, the TEH interaction builds up 
from noise or some low-level coherent source signal, and the 
beam becomes bunched. This beam now enters the second 
section of undulator, where the period is chosen so that the 
intersection with a higher order mode, say TM11, occurs at the 
same frequency (Fig. 1). Then the bunched beam will rapidly 
develop an interaction with the TM11 mode, which has a much 
different radiation pattern (Fig. 2(b)). The second undulator 
can be "switched on" electronically, and thereby the antenna 
pattern of the FEL will be changed (this is also described in 
Jerby's paper, see his Fig. 5). The experimental study of this 
is the purpose of this investigation. 

There are potentially two flaws in this technique. First, 
one can appreciate that the upper beam line in Fig. 1 can 
still intersect the TEH mode at a yet higher frequency: 
this opens the possibility of a parasitic radiation. Secondly, 
the "switching" may not be complete in that both TM11 
and TEH radiations will be present in the output at the 
same frequency. We have encountered both these problems 
in this work, although we have also had success with the 
electronic switching of the radiation pattern. In what follows, 

0093-3813/94S04.00 © 1994 IEEE 
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TEl.l 

TABLE I 
OPERATING PARAMETERS 

Electron Beam Energy 600 KeV 
Electron Pulse Length 150 nsec 
Electron Beam Diameter 4 mm 
Beam Current Density ~ 2 kA / cm2 

Drift Tube (waveguide) 24 mm dia. 
Guiding Field 7800 Gauss 
FEL wavelength 1.25 cm, 

24 GHz 

(a) 

Undulator 1st Section 2nd Section 
Period 3.36 cm 2.26 cm 
Length 30 cm 40 cm 
Fields 510 Gauss 390 Gauss 
Parameter aw = -0.5 aw = +0.5 

Fig. 3.    Apparatus, showing FEL (approximately 1 m long) and spectrometer 
geometry. 

XMi.i 
(b) 

Fig. 2.    (a) TEll radiation pattern; and (b) TM11 radiation pattern from a 
conical horn, computed from reference [3]. 

we describe the numerical study we have done, and then 
discuss the experimental hardware, in particular the undulator. 
We conclude with our observation of the radiation pattern of 
the FEL. 

II. THE EXPERIMENT 

The equipment consists of a pulseline accelerator which 
provides a 150 nsec pulse of ~600 kV to a cold cathode 
in a diode geometry [4]; a cylindrical electron beam then 
flows down the axis of a drift tube (overmoded waveguide) 
surrounded by the helical undulator windings. Radiation is 
emitted by a conical horn, and is studied by a detector which 
can sense radiation in various directions (Fig. 3). This detector 
can be located inside a grating spectrometer, which then 
serves as a narrow-band filter, or it can detect the total power 
emitted. We operate the FEL as a travelling wave amplifier 
using a magnetron as a source of ~10 kW at 24 GHz. 
Beam focussing is provided by a solenoidal field of about 
7.5 kG. Table I provides a list of the relevant experimental 
parameters. 

To begin, the device was studied with a code [5] that 
simulates the set of three first order FEL differential equations 
which follow the particle energy, jj and phase, ipj, and the 

radiation field amplitude, u: 

d-jj         k3asaw 2w2 . 
-£■ = — sin Vj + 7-i [(cos tP) sin ipj 

— (sin ip) cos ipj] 

dipj 
— k<w "r fcs 

C 
1- 

fj,2 — 2awascosipj 

7? 

-1/2 
(3) 

d<p 
oz 

oz I 

ipj = /    {ks + kw)dz' -wt + < 
Jo 

i(ij>-<t>) 
(4) 

(5) 

(6) 

The normalized vector potentials of the radiation and undulator 
fields are respectively as = eEs/K3mc2, and aw = eBj_/kw 

mc2, ß2 — 1 + a.%, and <p is the phase shift of the radiation 
field. This is a "zero slippage" computation which models the 
FEL as a travelling wave amplifier, given an input signal. In 
the code, 5000 "test" monoenergetic electrons are distributed 
uniformly at z = 0, on the axis as well as within the beam 
diameter. The orbit of the electron is represented by the 
parameter aw = ^v±_/c. 

In Fig. 4 we show a result which applies to the undulator 
that was finally built, for the electron energy of 600 kV. The 
input signal is TE11, and this grows exponentially in the small- 
signal "linear" regime in the first 33 cm of the undulator. The 
amplitude of the radiation field (u) is represented by Bessel 
functions appropriate to the two modes under consideration, 
the TEll and the TM11; the source term on the right hand 
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Fig. 4. Growth of radiation along the undulator (simulation); parameters are 
those given in Table I. In the simulation, thefirst undulator section ends at 33 
cm and the second undulator section extends 40 cm beyond that. 
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Fig. 5.    Typical orbits showing Type I to Type II transition; electron starts 
motion at (0, 0) in the transverse plane. Parameters are given in Table I. 

side of (5) drives both modes through the bunching current 
term (heavy brackets denoting the ensemble average over the 
injected electrons). There is some low-level excitation of the 
TM 11  mode in the first undulator due to the progressive 
bunching of the electrons  which is caused by the more 
powerful TEH   signal.  This "prebunching" from the first 
undulator then causes a rapid buildup of the TM 11 signal in the 
second undulator where the TM11 wave is resonant. The TE11 
signal grows much less in the second section of the undulator, 
and would not grow further were it not for the overlap of 
the gain-bandwidths for each interaction. As the representative 
electrons used in the simulation move from the first into the 
second section of the undulator, the phase increments at a 
different rate, as given by (6), since kw changes. This is 
an approximation to the more complex changes that should 
occur as the electron begins to move on a different trajectory 
(see Fig. 5 and discussion). Fig. 4 is the result of a choice 
of parameters which "optimizes" the growth of the TM11 
radiation. Although the calculation shown in Fig. 4 shows that 
the signals are still in the linear regime of exponential growth 
at the end of the undulator, if we run the output to TM11 
saturation, we find the TE11 signal remains at the low level it 
reached at the end of the first undulator section. 

The need for a guiding field makes an interesting situation 
here. We compare the "undulator frequencies" in each section, 
ß\\c/lw, with the gyrofrequency of electrons in the guiding 
field, eB0/~/mc. The latter is approximately 10 GHz at a field 
of 7.5 kG taking 7 ~ 2.1, whereas in the first section the 
undulator frequency is 7.6 GHz and in the second section, 

(a) 

(b) 

Fig. 6. (a) Undulator field, transition zone, "bucking" mode; (b) Same, but 
for both sections energized; the dotted line isfor measurements taken with 
the pickup loop at 90 ° with respect to the orientation of the probe for the 
solid line. 

11.4 GHz. The difference between the undulator frequency and 
the gyrofrequency has a large effect on the electron motion; 
in theory [6], the electron motion must switch between what 
is known as the "Type II" orbit into a "Type I" orbit as 
the electron moves from the first into the second section 
of the undulator. We have studied this effect using a code 
which follows the particle orbits in the undulator and guiding 
magnetic fields. Fig. 5 shows an electron that starts at x, y = 
0 in the first section of undulator and spirals into the second 
section. The change of orbit at the transition is very apparent, 
but the electron does not hit the wall (radius = 12 mm) and 
the motion remains regular. In fact, studies of the electron 
propagation along the device using a "witness plate" showed 
no appreciable loss of intensity or change in beam shape. 

The undulator was wound as a single tum bifilar helix 
which rests in a groove cut by a lathe screw-thread. The 
second section is composed of two windings, which permits 
the adjustment of the field in that section relative to the first. 
Two options were used—a "bucking" current mode, which 
gave nearly zero field in the second section, and a full current 
mode which was used when it was desired to generate the 
TM11 radiation. In Fig. 6(a) we show the transition region 
between the first and second sections when operated in the 
"bucking" mode, and in Fig. 6(b) the same region when both 
sections are driving a helical field. In the latter case, the 
transition is reasonably smooth. Magnetic measurements on 
the undulator were made with a small calibrated B coil. The 
undulator also has an adiabatic entry zone, where the field 
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Fig. 7.   Experimental radiation pattern of magnetron (no FEL radiation), with     p:„ o    pc, r„j;„,„      „ ... .. ,. ,m TEH theory comparison re«. Fig. 8.   FEL radiation pattern, with theory comparison, taking the total TM 
power to be 1.8 times as large as the TE power. The total power, as determined 
by a calibrated detector, is nearly 1 MW. 

builds up gradually over a few periods to its maximum (~500 
G). The effective undulator parameter, aw — -yv±/c, is about 
0.6 for each winding, taking into account the effect of the 
guiding field. The undulator is powered from a capacitor bank, 
the firing of which is timed with the accelerator so that the 
field maximum in the undulator occurs when the accelerator 
voltage pulse is present. 

ni. MEASUREMENTS OF RADIATION PATTERN 

Operating conditions were chosen such that the FEL oper- 
ated as an amplifier for the 24 GHz magnetron signal. This 
corresponded to operation at a diode voltage of approximately 
580 kV and undulator fields of 510 G in the first section 
and 390 G in the second. However, it was noted that higher 
frequency radiations were occurring, possibly as an oscilla- 
tor. Therefore, data was taken using our diffraction-grating 
spectrometer as a narrow band (~1 GHz) filter at 24 GHz. 
Referring to Fig. 3, the spacing between the radiating horn 
and the detecting horn is about 50 cm, which puts it in the 
Fraunhofer region (A/2a > 4a/d, where a is the radius of 
the FEL horn aperture and d is the separation of the horns). 
This region is protected from reflections using microwave 
absorber pads. The receiving horn is on an articulated arm 
made up of 2.5 cm brass light pipe and two 90 degree 
reflectors, which permit swiveling the horn through an angle. 
The light pipe connects to a cylindrical taper (cutoff frequency 
19 GHz), which then enters the spectrometer at the focal 
point of a polyethylene lens. The lens forms an approximately 
parallel wavefront microwave beam which is incident upon a 
"blazed" aluminum diffraction grating. Having reflected from 
the grating, the waves are focussed by a curved mirror onto a 
detector, which is provided with a small receiving horn. The 
resolution of the device was found to be about 5%, which is the 
reciprocal of the number of grating grooves illuminated (the 
groove spacing is 1.0 cm). The device is described in detail 
in reference [7]. Another detector fixed at 8 = 0 provides a 
signal monitor. 

The measurement was first "calibrated" by observing the 
radiation pattern from the magnetron only; this is a TE11 mode 
which is launched into the cylindrical overmoded drift tube. 
This is presented in Fig. 7, which shows a forward-directed 
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Fig. 9.    Growth of radiation along the undulator: same conditions as Fig. 4, 
except that the electron energy is 583 kV. 

power pattern with HWHM of nine degrees, in agreement 
with theory. Operating the first undulator section by itself does 
not change this radiation pattern. The 24 GHz signal radiated 
by the FEL with both undulator sections operating is shown 
in Fig. 8. There is first of all a new and distinctive feature 
which appears at 9 - 23°, which is the predicted maximum of 
the off-axis TM11 mode pattern. However, the central feature 
characteristic of the TEH radiation remains (note the TM11 
pattern has a "hole" at = 0). Our conclusion is the device is 
radiating a mixture of TE11 and TM11 radiation. A composite 
radiation pattern was calculated with a mixture of each type 
of radiation, and in Fig. 8 is shown the prediction of theory 
if the TM11 radiation is about twice as intense as the TEH 
radiation. Apart from the discrepancy with the data at 17°, the 
fit is a good one. 

Power measurements showed that the total power radiated 
by the device was under 1 MW, including possibly some radi- 
ation at a high frequency parasitic. However, Fig. 4 suggests 
the TM11 output should be much higher. While some of this 
discrepancy may be due to the simple numerical model (e.g. 
neglect of initial beam energy spread), another consideration 
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is that the experiment was actually run at a lower electron 
energy than that used in the simulation given in Fig. 4, which 
gave optimum output. A rerun of the numerical program at an 
electron energy of 583 kV shows that the TM11 power (~400 
kW) is then predicted to be only about twice the TE11 power 
(Fig. 9). This shows the predicted power is very sensitive to 
the electron energy, which in any event we cannot measure to 
three significant figures. 
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Possibility of Generating a High-Power Self-Similar Radiation Pulse from a Free-Electron Laser 
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Using ID short-wavelength (8 Mm) Compton free-electron-laser (FEL) equations with slippage we 
explore propagation of a high-power pulse down a tapered undulator FEL traveling-wave amplifier 
For an appropriate taper, a short pulse (-300 fsec FWHM) with regular features will propagate self- 
similarly as it grows in power, slipping through a much longer electron pulse. The power spectrum 
of the pulse is nearly Gaussian with no sidebands. The electron energy is depressed by -33% but 
slippage causes the peak pulse intensity to be about the same as the electron-beam power density 
~10TW/cm2. 

PACS numbers: 41.60.Cr, 42.60.Jf 

Under certain conditions, the free-electron-laser (FEL) 
oscillator has been found to provide an output of narrow, 
chaotic high-power "spike" pulses of radiation character- 
ized by a wide irregular spectrum [1-3]. Furthermore, 
in the operation of a FEL oscillator, experiment [4] as 
well as numerical theory which carries the analysis well 
into the nonlinear regime [5] shows that the FEL can 
operate in a mode characterized by low efficiency to- 
gether with a narrow spectrum, or in a mode that has 
higher efficiency and a wide spectrum. The latter has 
to do with the sideband instability [6] which has been 
observed experimentally [7,8] and which is also found 
in connection with superradiant spiking studies [9-13], 
since both [14] arise from slippage. However, there is 
also evidence that the sideband instability can be stabi- 
lized with an appropriately chosen taper of the undulator 
[15-17]. 

This Letter considers a traveling-wave, high-gain, 
Compton FEL which operates at nearly optimal efficiency 
using a variable-parameter undulator and which produces 
an intense "clean" output spike pulse with a nearly 
Gaussian spectrum free of sidebands. The hardware 
would include a laser "seed" source which supplies a 
high-power pulse having a Gaussian shape, as input to a 
high-efficiency FEL traveling-wave amplifier having an 
appropriately tapered undulator. Our findings are that 
one might expect to develop an infrared FEL pulse having 
peak power -10 TW/cm2 and FWHM -300 fsec using 
a 45 MeV, 150 A electron beam. We now develop a 
numerical model which establishes how such a FEL pulse 
can be prepared. 

We shall study a short optical pulse which is propagating 
along a much longer pulse of electrons that is traversing 
an undulator. At FEL resonance, as the light wave moves 
down one undulator period, it slips ahead of the electrons 
by one optical wavelength As. We shall study the case 
where the electron beam pulse is much longer than the 
overall slippage distance Ls = NWAS, so that essentially no 
radiation appears ahead of or behind the electron pulse. (A 
number of recent publications have considered the wealth 

of interesting effects which occur at the beginning and the 
end of the electron pulse, which involve "superradiance" 
[9-13].) We begin by studying a set of ID equations 
which are appropriate for the Compton FEL: 

dyyU.y) _     2p y2
rAs sin ijij 

rjßß 

Ml - ßß 

dx 

ddj(x .y) 1 

dx 2p 

8A(x ,y) 

kKßj\\ 

iy, 

-ie 

(1) 

(2) 

(3) by \   y 

The above equations are derived directly from the origi- 
nal ID time-dependent FEL equations [6] by transform- 
ing the variables z and t into new independent variables 
x and y [9], i.e., x = (ct - z)/lc, y = (z - vnt)/lcßf, 
here, lc = KjAirp  is the cooperation length which is 
defined as the minimum distance over which an elec- 
tron may interact cooperatively with the radiation [10], 
P = y7[(aKo)p/Ackw)2/'i is the Pierce parameter; ß^ = 
[1 - (fi2 - 2awas cost//j)/yj]1^2 is the axial velocity of 
the ;th electron, yn2 = 1 + a\ + a2, aw and as are the nor- 
malized vector potentials of the undulator {eB±/kwmc2) 
and radiation field (eEs/ksmc2)\ yj is the relativistic fac- 
tor of the yth electron, ij/j = Oj + <p is the relative phase 
of the yth electron with respect to the radiation pulse, 
A(x,y) = /!,<?''* is the complex amplitude of the radia- 
tion pulse with As = wsaj\JyTp wp, and <p is the phase 
shift of the radiation pulse.   The angular brackets on the 
right-hand side of Eq. (3) indicate an ensemble average 
over all electrons.  For the other quantities, yr is the reso- 
nant energy of electron in units of mc2, kw = 2n/l„ is 
the wave number of the undulator, and lw is the undu- 
lator period; ks = 2n/As = ws/c is the wave number of 
the radiation pulse, As is the radiation wavelength, /,, and 
A, satisfy the resonance condition \s = /„.(l + a2)/2y2. 
and (op = (47re2ne/m)i/2 is the plasma frequency for ne 

electrons/cm3.   The original FEL wave equations have 
been obtained assuming the field amplitude is a slowly 
varying function of time; this approximation has been 
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verified in the application for the short pulse propagation 
discussed here. 

The numerical simulation is based on the computa- 
tional model described by Eqs. (l)-(3).   The FEL works 
as a traveling-wave amplifier.  The spatial distribution of 
simulation electrons has a rectangular profile, the elec- 
trons are taken to be monoenergetic, and at the undu- 
lator entrance, they are uniformly distributed inside the 
beam length Lb with 1000 simulation electrons per ra- 
diation wavelength.   For each wavelength-size "strip" of 
electrons, the relative phase location of the electrons with 
respect to the radiation field is uniformly distributed from 
-77 to 7T.   The input radiation pulse is "seeded" inside 
the electron beam, with its initial amplitude as0 = 10"4 

(200 MW/cm2 at 8 /xm wavelength).   The pulse profile 
and width can be varied so that we can study the evolution 
of various pulses.   For the output format of the computa- 
tional results, the electron-beam pulse and the radiation 
spike are plotted as the function of independent variables 
x and v, respectively, which implies two moving "win- 
dows" with the former at the speed of light c and the latter 
at the speed of electrons v\\\ both are scaled in the units 
of the radiation wavelength A^ from their leading edge. 
Since all these quantities are recorded at various undula- 
tor positions, these results will describe the time evolution 
of the pulses.   In several test runs, we have carried out 
simulations for different FEL parameters, including dif- 
ferent lengths of beam pulses and radiation pulses.   Our 
results for superradiant pulse evolution are in a very good 
agreement with that of previous authors [9] and provide a 
calibration of our code. 

Our main interest is to investigate an initial short radi- 
ation pulse propagating through a sufficiently long electron 
pulse. The initial radiation pulse has a Gaussian profile, 
shown in Fig. 1(a), and is injected into the rear part of the 
electron beam pulse; the peak of the initial pulse is located 
at x = 225 Xs. The radiation pulse starts from that posi- 
tion at the undulator entrance, and then moves toward the 
front of the electron pulse as it moves along the undulator. 
Shown in Fig. 1(b) is the Fourier-transformed spectrum, 
which has a central frequency ws = 2.36 X 1014 sec-1. 

0.5 
<<r~~o.4 
o 
-0.3 

(SJ _0.2 

0.0 

. (a) 

■ 

0       100    200    300 

yi   (units of A. ) 
-.2-.1   0   .1   .2 .3 

Aco/co. 

FIG. 1. The initial radiation pulse with a Gaussian profile, 
shown in (a), upon injection into a rectangular electron beam 
pulse, y, = ß\\(cy.   Shown in (b) is the Fourier-transformed 
spectrum; the central frequency is ais = 2.36 X 1014 sec" 

TABLE I.    Simulation parameters of radiation spike propagat- 
ing in electron beam pulse. 

Beam parameters 

Electron beam energy 
Electron beam current 
Beam intensity 
Electron beam radius 
Beam pulse length 

Undulator parameters 

Undulator period 
Undulator taper 
Undulator parameter 
Undulator length 

Radiation pulse 

y = 89.5 
/* = 150 A 
5.4 TW/cm2 

rb = 0.02 cm 
Lb = 300A, (2.4 mm) 

/„. = 2.5-1.5 cm; linear ramp 
77 = 2.6 X 10"3 cm"1 

aw — 2.0 (constant) 
/V„ = 150 

Radiation wavelength 
Spike length 

(FWHM, intensity) 
Initial pulse amplitude 
Peak spike amplitude 

Other parameters 

A, = 8.0 fim 

Lr = \2AS 

a,0 = IO-4 (200 MW/cm2) 
a, =0.021 (9 TW/cm2) 

Pierce parameter 
Cooperation length 

p = 0.02 
/, = 4.6A, 

A&> = 0. 
at 

Other simulation parameters of the FEL amplifier are listed 
in Table I, where a representative electron beam pulse 
length of 2.4 mm (~8 psec) is taken; the beam pulse is 
300 wavelengths long, and so the optical pulse moves only 
halfway through as it traverses 150 undulator periods. 

Figure 2  shows  the  pulse  evolution  in  a  constant 
period undulator (ZK. = 2.5 cm).   The profiles of elec- 
tron energy and the radiation spike together with its 
Fourier-transformed spectrum are shown at two undula- 
tor positions N„ = 75 [Figs. 2(al)-2(a3)] and Nw = 150 
[Figs. 2(bl)-2(b3)].   In these figures, the electron en- 
velope is at rest and the optical spike propagates from 
the right to left as Nw  increases.    Figures 2(a2) and 
2(b2) show that the optical pulse is amplified while the 
electron energy is reduced [Figs.2(al) and 2(bl)].   The 
"efficiency," defined from the maximum drop in elec- 
tron energy corresponding to maximum pulse intensity, 
is  -10%, compared with the efficiency of a steady- 
state long continuous wave which is ~3%.   The radi- 
ation spike retains the initial profile until approximately 
100 undulator periods where the growth becomes satu- 
rated.   Saturation occurs when the loss of beam energy 
causes the interaction to drop out of resonance.  A flat re- 
gion and pulses beside the main spike develop from the 
two edges of the pulse after it propagates a long distance, 
and this causes a ragged energy profile [Fig. 2(bl)].  Fig- 
ure 2(b3) shows a powerful long wavelength sideband 
comparable in intensity to the carrier; it has about the 
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FIG. 2. Constant undulator period simulation. The radiation 
pulse slips forward into the electron beam from right to left, 
x\ = tcx. The beam energy distribution, radiation profile, and 
its Fourier-transformed spectrum (ordinate, arbitrary units) are 
shown in (al)-(a3) at NH. = 75 and (bl)-(b3) at N,. = 150. 

same displacement from the carrier [6] as the sideband 
instability. 

If the undulator is tapered, we expect the growth of the 
sideband can be suppressed, and in Fig. 3 we show the re- 
sults.  The undulator period is linearly tapered from 2.5 to 
1.5 cm in 150 periods.  All other conditions are the same 
as in Fig. 2 and are obtained from Table I.  In this numeri- 
cal experiment, we did not optimize the undulator taper to 
pursue the highest efficiency enhancement:  Instead, the 
appropriate taper was chosen for the purposes of obtain- 
ing the cleanest spike (however, this optimized taper is not 
very different from the taper which extracts maximum en- 
ergy from the beam).  Unlike the untapered cases, the ra- 
diation pulse at high amplitude does not radically change 
its shape, but displays a self-similar profile throughout the 
slippage region. The width of the initial Gaussian pulse is 
FWHM ~ l\s in intensity; it evolves and becomes broad- 
ened to about FWHM ~ 12A, during the first 50 periods: 
it continues to grow in amplitude while keeping a nearly 
constant profile and width.  We have tried various widths 
of the initial Gaussian pulse, as well as a different initial 
amplitude profile varying as ~1/cosh(ay) (a solitary wave 
solution [18]), and we find the variation of initial choices 
converges to a similar output pulse profile and width, al- 
though the number of undulator periods needed to form 
the self-similar pulse profile may vary.  This suggests that 

N   =150 

50- 

40. 

30. 

IAI220 . 

10. 

0. 1    , 

(a2)_ 

100     200     300 

250 

200 

150 

IAI2100 

50 

0 

100     200     300 
x   (units of X ) 

' j 

(b2) 

y  (units of x ) 
.12 

M   -09 
■            fl 

(a3) 

3..0fi < 
.03 • . 

0 .    J K 

0.6 

~-0.4 
3 

^0.2 

100     200     300 
y   (units of X ) 

-.3 -.2 -.1   0   .1   .2  .3 

Aco/ca^ 

0.0 

:    1 
1 

(b3). 

-.3 -.2 -.1   0   .1   .2  .3 

ACO/CO. 

FIG. 3. The parameters are the same as in Fig. 2 except that 
the undulator period is linearly tapered from 2.5 to 1.5 cm. 
When the radiation spike slips over the electron beam, the 
beam energy is continuously extracted (al) and (bl), while the 
spike keeps a self-similar profile (a2) and (b2). Its Fourier- 
transformed spectrum (amplitude in arbitrary units) is shown in 
(a3) and (b3). A Gaussian comparison pulse (dotted curves), 
described in the text, is shown in (b2), and its Fourier transform 
appears in (b3). 

a short optical pulse may eventually evolve to a self-similar 
spike in the slippage region of the tapered undulator. The 
characteristic width of the spike is similar to the prediction 
of the Ginzburg-Landau solitary wave theory [19]. In the 
constant period undulator, the self-similar feature is lost 
when the FEL system goes out of resonance. 

We should expect an efficiency enhancement in the ta- 
pered undulator. Comparing Fig. 3(b2) with Fig. 2(b2), 
one finds the efficiency is roughly a factor of 3.3 better 
than the same FEL with constant-period undulator. 
The maximum value of the normalized field amplitude 
as = 0.021 (~9 TW/cm2) corresponds to an intensity of 
the same order as the beam kinetic energy intensity; this 
enhancement in power is caused by the slippage of the 
radiation pulse over "new" electrons as it moves down 
the undulator. Now the ragged profile of the electron 
energy in the constant undulator [Fig. 2(bl)] is found 
to disappear in the tapered undulator [Fig. 3(bl)]. The 
strong intensity of the spike forms a very deep potential 
well which may trap most of electrons even though they 
have an energy spread. The maximum bucket height 
<5ymax may be obtained from 8ymn/yr = l^ß^TJ>, 
which   gives   the   value   of  <5ymax = 10   at   NK = 75 
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and (5ymax = 12.5 at NK = 150. In this case, it is the 
undulator taper which helps maintain the resonant wave- 
particle interaction. 

The choice of the 8 /im wavelength was arbitrary 
although this is representative of FEL performance with 
the chosen beam parameters. (The same qualitative 
features were obtained in another tapered undulator FEL 
simulation for a much lower beam energy and wavelength 
of 1.5 mm.) Considering diffraction, a Rayleigh range 
of about one-half the undulator length would require an 
optical beam larger than the electron-beam diameter we 
have chosen, or a shorter wavelength. Because of the 
large optical intensity achieved, one would not expect 
optical guiding to be effective beyond the region of 
exponential growth [20]. 

Finally, the sideband is suppressed in the tapered 
undulator FEL, as shown in Figs. 3(a3) and 3(b3). In this 
case, we have a comparatively clean spike in both time 
and frequency domains. Note also there is a frequency 
shift from the resonance in these spectra. Frequency 
shifting is an intrinsic characteristic of the time-dependent 
FEL equations [21]. We may estimate the frequency shift 
from the computed phase shift </>(x,y) = -i ln(A/As), 
and Aw/ws = 2pd<f>/dx, obtaining the values of 
Aw/wj = -0.014; -0.032 at the two undulator positions 
Nw = 75; 150 which agree approximately with the nu- 
merical results. In Fig. 3(b2) is also shown a comparison 
Gaussian pulse having the same amplitude and FWHM as 
the self-similar pulse; in Fig. 3(b3) we find the Fourier 
transform of this comparison pulse (also Gaussian) is a 
rather good fit to the spectrum of the self-similar pulse. 
The solitary wave l/cosh(av) solution is also very close 
to the Gaussian fit. 

In conclusion, we have found that injection of a single 
short radiation pulse into a long electron-beam pulse 
at the input of a tapered undulator traveling-wave FEL 
amplifier should result in the development of an intense 
spike which is comparatively clean in both time and 
frequency domains, and which propagates in a self-similar 
way along the undulator. Because of the slippage, the 
peak pulse intensity is enhanced and is of the same order 
as the electron-beam intensity. Since the pulse spectrum 
is regular and nearly Gaussian, the output pulse from the 
FEL is useful for technical applications and indeed might 
be compressed and intensified even further using standard 
optical techniques. 

This work is sponsored by the Office of Naval Re- 
search. 
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